• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CONCENTRATION-TIME PROFILES OF AMLODIPINE, GLYBURIDE, AND DIGOXIN IN RATS: PREDICTIONS USING A CONTINUOUS ABSORPTION MODEL

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Radice_temple_0225E_14677.pdf
    Embargo:
    2023-01-10
    Size:
    4.411Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2021
    Author
    Radice, Casey
    Advisor
    Nagar, Swati
    Committee member
    Korzekwa, Kenneth
    Barrero, Carlos A.
    Fassihi, Reza
    Yazdanian, Mehran
    Department
    Pharmaceutical Sciences
    Subject
    Pharmaceutical sciences
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/7216
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/7195
    Abstract
    The most common route of administration is oral, despite absorption barriers leading to variable exposure and therapeutic effect. Preclinical species are used to study this variability, though they are expensive and time-consuming. Modeling and simulation provide an alternative to preclinical studies. In this study, a continuous rodent absorption model was developed and refined to predict drug absorption prior to entering animals. The continuous absorption model describes the change in drug concentration over distance and time. The intestine is defined by a physiologically based pharmacokinetic (PBPK) model, which is attached to a simpler classical compartmental model to represent the rest of the body. Physiological factors and drug physicochemical properties will be incorporated to predict the absorption profiles of amlodipine (AML), glyburide (GLY), and digoxin (DIG). The anatomy of the gastrointestinal tract and therefore, the physiological factors inputted into the model, are species specific. The region lengths, such as the jejunum, and absorptive surface area amplifiers, such as the villi, of the small intestine differ in humans versus rats. In addition, the stomach composition and presence of the gallbladder is not consistent between the two species. Similarly, food alters the physiology of the intestines. Periods of fasting can induce changes in intestinal pH and gastrointestinal motility. Chapter One details the background concerning this project, along with the hypothesis and goals. Chapter Two involves the development and validation for bioanalytical methods for the drugs of interest. Chapter Three discusses the collection of anatomical data, specifically the intestinal pH and gastrointestinal motility under fed and fasted conditions. Chapter Four includes in vitro ADME data collection and in vivo IV pharmacokinetic studies in male Sprague-Dawley rats to determine the systemic disposition functions in for amlodipine (AML), glyburide (GLY) and digoxin (DIG). Chapter Five includes the in vivo pharmacokinetic studies in male Sprague-Dawley rats to determine the effect of food on the absorption of amlodipine (AML), glyburide (GLY) and digoxin (DIG). Chapter Six details the in vivo rat studies involving the influence of particle size on GLY suspension absorption. Chapter Seven discusses the input of physiological factors and prediction of drug absorption using a continuous absorption model in rats. Chapter Eight details future directions and the summary of the project.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.