Genre
Journal articleDate
2021-06-29Author
Mittal, Vijay A.Ellman, Lauren M.
Strauss, Gregory P.
Walker, Elaine F.
Corlett, Philip R.
Schiffman, Jason
Woods, Scott W.
Powers, Albert R.
Silverstein, Steven M.
Waltz, James A.
Zinbarg, Richard
Chen, Shuo
Williams, Trevor
Kenney, Joshua
Gold, James M.
Department
PsychologySubject
Clinical high-riskPsychosis
Schizophrenia
Prodome
Risk screening|Behavioral tasks
Computational psychiatry
Precision medicine
Computerized assessment
Risk calculator
Permanent link to this record
http://hdl.handle.net/20.500.12613/7058
Metadata
Show full item recordDOI
https://doi.org/10.20900/jpbs.20210011Abstract
Early detection and intervention with young people at clinical high risk (CHR) for psychosis is critical for prevention efforts focused on altering the trajectory of psychosis. Early CHR research largely focused on validating clinical interviews for detecting at-risk individuals; however, this approach has limitations related to: (1) specificity (i.e., only 20% of CHR individuals convert to psychosis) and (2) the expertise and training needed to administer these interviews is limited. The purpose of our study is to develop the computerized assessment of psychosis risk (CAPR) battery, consisting of behavioral tasks that require minimal training to administer, can be administered online, and are tied to the neurobiological systems and computational mechanisms implicated in psychosis. The aims of our study are as follows: (1A) to develop a psychosis-risk calculator through the application of machine learning (ML) methods to the measures from the CAPR battery, (1B) evaluate group differences on the risk calculator score and test the hypothesis that the risk calculator score of the CHR group will differ from help-seeking and healthy controls, (1C) evaluate how baseline CAPR battery performance relates to symptomatic outcome two years later (i.e., conversion and symptomatic worsening). These aims will be explored in 500 CHR participants, 500 help-seeking individuals, and 500 healthy controls across the study sites. This project will provide a next-generation CHR battery, tied to illness mechanisms and powered by cutting-edge computational methods that can be used to facilitate the earliest possible detection of psychosis risk.Citation
Mittal VA, Ellman LM, Strauss GP, Walker EF, Corlett PR, Schiffman J, et al. Computerized Assessment of Psychosis Risk. J Psychiatry Brain Sci. 2021;6:e210011. https://doi.org/10.20900/jpbs.20210011Citation to related work
HapresHas part
Journal of Psychiatry and Brain Science, Vol. 6ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/7039