• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MIRNA-22 3p AND ITS ROLE IN TAU PHOSPHORYLATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Eneanya_temple_0225M_14655.pdf
    Size:
    3.728Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2021
    Author
    Eneanya, Chidubem
    Advisor
    Praticò, Domenico
    Committee member
    Fossati, Silvia
    Drosatos, Konstantinos
    Department
    Biomedical Sciences
    Subject
    Neurosciences
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/6908
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/6890
    Abstract
    Neurodegenerative disorders occur when neurons, in the brain and spinal cord, begin to decline. Instabilities in these cells cause them to function irregularly and eventually result in death. A subset of these diseases is called tauopathies. Tauopathies are characterized by a filamentous accumulation of hyper-phosphorylated tau, in neurons and glial cells. Currently, it is unknown how tau becomes hyper-phosphorylated and/or it accumulates in the brain. Tau is a highly soluble natively unfolded protein, closely associated with the proper functioning of the cytoskeletal network. However, in tauopathies, tau becomes an insoluble protein that forms intracellular fibrillar deposits in neurons and glial cells. Studies have shown that there is a direct relationship between the abnormal increase in tau phosphorylation, the cell cycle, and MiRNA-22-3p. There have been several strategies and targets developed in order to treat tauopathies, but there are no known consistent, effective treatments. Recently, miRNAs have emerged as a potential target to manipulate the tau protein. MiRNAs are small noncoding RNAs, that control major cellular functions by binding to the 3’ untranslated region of messenger RNAs, causing inhibition of their translation or promoting their degradation. We have hypothesized that miRNA-22-3p halts abnormal tau phosphorylation levels, in brain endothelial cells. To test this hypothesis, we transfected a miRNA-22-3p mimic, into a brain endothelial cell line. Then, we ran a western blot experiment to look at the proteins, related to tau. We looked at total tau, tau phosphorylation at different epitopes, and P21, a cell cycle marker. Our data demonstrated that miRNA-22-3p halts abnormal tau phosphorylation. In conclusion, we have shown a relationship between miRNA-22-3p and tau phosphorylation. We have highlighted a possible therapeutic benefit that, when investigated further, could serve as a potential treatment on tauopathies and accentuated favorable targets against abnormal tau phosphorylation. We hope to be able to provide others with the information needed to manipulate miRNA-22-3p and downregulate the expression of the tau protein.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.