• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Autonomy through real-time learning and OpenNARS for Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hammer_temple_0225E_14635.pdf
    Size:
    17.96Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2021
    Author
    Hammer, Patrick cc
    Advisor
    Wang, Pei, 1958-
    Vucetic, Slobodan
    Committee member
    Payton, Jamie
    Strannegård, Claes
    Department
    Computer and Information Science
    Subject
    Artificial intelligence
    Autonomous agents
    Non-axiomatic reasoning
    Practical reasoning
    Procedure learning
    Reasoning under uncertainty
    Reinforcement learning
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/6894
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/6876
    Abstract
    This work includes an attempt to enhance the autonomy of intelligent agents via real-time learning.In nature, the ability to learn at runtime gives species which can do so key advantages over others. While most AI systems do not need to have this ability but can be trained before deployment, it allows agents to adapt, at runtime, to changing and generally unknown circumstances, and then to exploit their environment for their own purposes. To reach this goal, in this thesis a pragmatic design (ONA) for a general-purpose reasoner incorporating Non-Axiomatic Reasoning System (NARS) theory is explored. The design and implementation is presented in detail, in addition to the theoretical foundation. Then, experiments related to various system capabilities are carried out and summarized, together with application projects where ONA is utilized: a traffic surveillance application in the Smart City domain to identify traffic anomalies through real-time reasoning and learning, and a system to help first responders by providing driving assistance and presenting of mission-critical information. Also it is shown how reliable real-time learning can help to increase autonomy of intelligent agents beyond the current state-of-the-art. Here, theoretical and practical comparisons with established frameworks and specific techniques such as Q-Learning are made, and it is shown that ONA does also work in non-Markovian environments where Q-Learning cannot be applied. Some of the reasoner's capabilities are also demonstrated on real robotic hardware. The experiments there show combining learning knowledge at runtime with the utilization of only partly complete mission-related background knowledge given by the designer, allowing the agent to perform a complex task from an only minimal mission specification which does not include learnable details. Overall, ONA is suitable for autonomous agents as it combines, in a single technique, the strengths of behavior learning, which is usually captured by Reinforcement Learning, and means-end reasoning (such as Belief-Desire-Intention models with planner) to effectively utilize knowledge expressed by a designer.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.