• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Hippocampal Representations of Targeted Memory Reactivation and Reactivated Temporal Sequences

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Alm_temple_0225E_12829.pdf
    Size:
    1.910Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2017
    Author
    Alm, Kylie H
    Advisor
    Olson, Ingrid R.
    Committee member
    Olson, Ingrid R.
    Chein, Jason M.
    Parikh, Vinay
    Smith, David V.
    Giovannetti, Tania
    Venkatraman, Vinod
    Department
    Psychology
    Subject
    Psychology, Cognitive
    Neurosciences
    Hippocampus
    Memory Replay
    Representational Similarity Analysis
    Targeted Memory Reactivation
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/671
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/653
    Abstract
    Why are some memories easy to retrieve, while others are more difficult to access? Here, we tested whether we could bias memory replay, a process whereby newly learned information is reinforced by reinstating the neuronal patterns of activation that were present during learning, towards particular memory traces. The goal of this biasing is to strengthen some memory traces, making them more easily retrieved. To test this, participants were scanned during interleaved periods of encoding and rest. Throughout the encoding runs, participants learned triplets of images that were paired with semantically related sound cues. During two of the three rest periods, novel, irrelevant sounds were played. During one critical rest period, however, the sound cues learned in the preceding encoding period were played in an effort to preferentially increase reactivation of the associated visual images, a manipulation known as targeted memory reactivation. Representational similarity analyses were used to compare multi-voxel patterns of hippocampal activation across encoding and rest periods. Our index of reactivation was selectively enhanced for memory traces that were targeted for preferential reactivation during offline rest, both compared to information that was not targeted for preferential reactivation and compared to a baseline rest period. Importantly, this neural effect of targeted reactivation was related to the difference in delayed order memory for information that was cued versus uncued, suggesting that preferential replay may be a mechanism by which specific memory traces can be selectively strengthened for enhanced subsequent memory retrieval. We also found partial evidence of discrimination of unique temporal sequences within the hippocampus. Over time, multi-voxel patterns associated with a given triplet sequence became more dissimilar to the patterns associated with the other sequences. Furthermore, this neural marker of sequence preservation was correlated with the difference in delayed order memory for cued versus uncued triplets, signifying that the ability to reactivate particular temporal sequences within the hippocampus may be related to enhanced temporal order memory for the cued information. Taken together, these findings support the claim that awake replay can be biased towards preferential reactivation of particular memory traces and also suggest that this preferential reactivation, as well as representations of reactivated temporal sequences, can be detected within patterns of hippocampal activation.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.