• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Stress in a Microgravity Bioreactor

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kramarenko_temple_0225M_14499.pdf
    Size:
    4.319Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2021
    Author
    Kramarenko, George cc
    Advisor
    Lelkes, Peter I.
    Har-el, Yah-el
    Committee member
    Lelkes, Peter I.
    Har-el, Yah-el
    Wang, Karin
    Department
    Bioengineering
    Subject
    Bioengineering
    Biomedical engineering
    3D Printing
    Bioreactor
    Cell stretching
    Mechanical strain
    Microgravity
    Osteoblasts
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/6574
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/6556
    Abstract
    This project involves the design and development of a cell stretching bioreactor device that can work in conjunction with a Random Positioning Machine (RPM) apparatus. Microgravity environments, such as in space, have been shown to induce alterations in cellular development due to inadequate mechanical loading of biological tissue. Because of this, long-term spaceflight has led to many health concerns, including osteoporosis and muscle atrophy. Space travel is rare and costly, making this research difficult to conduct, however; techniques to simulate microgravity on Earth can be achieved by using a Random Positioning Machine. This device has been a beneficial tool used to study the effect gravity has on cellular growth, yet certain tissues in the body, such as bone and muscle, require mechanical stress, strain, and mechanical loading to develop properly. Because of this, a device that can induce strain on cells while subjected to microgravity conditions is needed to further improve cellular research for space exploration. The constructed bioreactor consists of 3D printed and custom-made components that can induce uniaxial cyclic strain on cells adhered to an elastic membrane. Validation and testing of the device have shown that this bioreactor is suitable for cellular experimentation to work in conjunction with an RPM to deliver a controlled amount of strain while under microgravity conditions.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.