• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ANION EFFECTS IN HOMOGENOUS PALLADIUM CATALYSIS AND LUMINESCENT PROPERTIES OF COPPER(I) COMPLEXES BEARING A WEAKLY-COORDINATING ANIONIC N-HETEROCYCLIC CARBENE LIGAND

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sabbers_temple_0225E_14475.pdf
    Size:
    13.78Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2021
    Author
    Sabbers, William Anthony
    Advisor
    Dobereiner, Graham
    Committee member
    Valentine, Ann M.
    Wengryniuk, Sarah E.
    Hamze, Rasha
    Department
    Chemistry
    Subject
    Chemistry
    Anions
    Charge separation
    Coordinating ability
    Luminescent organometallic complexes
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/6556
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/6538
    Abstract
    The general theme of this dissertation concerns how the locality of an anionic moiety, be it a weakly coordinating anion or an anionic ligand, affect the spectroscopic and structural properties of organotransition metal complexes. Probing the columbic interactions between traditional and novel weakly coordinating anions with transition metal complexes, enables synthetic chemists to select anions that can improve catalytic transformations, impart stability of reactive intermediates, or develop new mechanistic insights. Additionally, presented herein is the manifestation of a new class of luminescent copper complexes which bear a weakly coordinating anionic N-heterocyclic carbene ligand.Firstly, a qualitative scale of coordinating ability is prepared by pairing traditional anions and weakly-coordinating anions with [Pd(IPr)(C(O)C9H6N)]+. NMR, IR, Computation, %Vbur, and X-ray crystallographic techniques are used to study the solution and solid-state interactions of these salts. During this study, a novel anion, denoted IMP- is prepared where two B(C6F5) groups are bridged by a phenyl imidazole core. Ultimately, it was found that sterics dictate coordinating ability observed by NMR and %Vbur, while IR and computation show the electronic effects of anion coordination. Continuing our understanding of the interplay between cation and anion, anionic Au(I) complexes are synthesized and paired with the same palladium cation in our first investigation. The framework of these Au(I) anions features a weakly coordinating N-heterocyclic carbene ligand that bears a borate moiety of the NHC backbone. Facile dissociation of a dimethyl sulfide ligand with metal alkoxide/phenoxides/thiophenoxides affords sodium or potassium salts. With these anions in hand, ion pairs are isolated in polar solvents and in the solid state. Au anions reside in the outer sphere of the palladium cation; like that of weakly coordinating anions such as BArF4-. Lastly, Luminescent group 11 organometallic complexes featuring N-heterocyclic carbene (NHC) ligands offer a swath of applications; catalytic transformations in organic chemistry to inorganic material uses in light emitting technologies. Conventional complexes are of the type NHC-M-X, where M is Cu, Ag, or Au and X represents anionic ligands that are often prone to hydrolysis. In this dissertation, Cu(I) complexes featuring this N- heterocyclic carbene ligand bearing a weakly coordinating anionic substituent (WCA-NHC) are prepared. (WCA-NHC)-M-L are air and moisture stable and differ from conventional NHC-M-X in that the metal can be supported by 2 datively-bound ligands. Initial computation reveals a change in dipole of (WCA-NHC)-Cu-PR3 charge transfer compared to that of reported NHC-M-X. By exchanging triphenylphosphine for diphenyl-2-pyridyl phosphine, we can change the emission wavelength by about 200 nm.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.