• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Techniques for Extracting Contours and Merging Maps

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Adluru_temple_0225E_10021.pdf
    Size:
    9.170Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2008
    Author
    Adluru, Nagesh
    Advisor
    Latecki, Longin
    Committee member
    Lakaemper, Rolf
    Vucetic, Slobodan
    Sobel, Marc J.
    Department
    Computer and Information Science
    Subject
    Computer Science
    Contour Grouping
    Multirobot Mapping
    Object Recognition
    Particle Filters
    Robot Mapping
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/638
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/620
    Abstract
    Understanding machine vision can certainly improve our understanding of artificial intelligence as vision happens to be one of the basic intellectual activities of living beings. Since the notion of computation unifies the concept of a machine, computer vision can be understood as an application of modern approaches for achieving artificial intelligence, like machine learning and cognitive psychology. Computer vision mainly involves processing of different types of sensor data resulting in "perception of machines". Perception of machines plays a very important role in several artificial intelligence applications with sensors. There are numerous practical situations where we acquire sensor data for e.g. from mobile robots, security cameras, service and recreational robots. Making sense of this sensor data is very important so that we have increased automation in using the data. Tools from image processing, shape analysis and probabilistic inferences i.e. learning theory form the artillery for current generation of computer vision researchers. In my thesis I will address some of the most annoying components of two important open problems viz. object recognition and autonomous navigation that remain central in robotic, or in other words computational, intelligence. These problems are concerned with inducing computers, the abilities to recognize and navigate similar to those of humans. Object boundaries are very useful descriptors for recognizing objects. Extracting boundaries from real images has been a notoriously open problem for several decades in the vision community. In the first part I will present novel techniques for extracting object boundaries. The techniques are based on practically successful state-of-the-art Bayesian filtering framework, well founded geometric properties relating boundaries and skeletons and robust high-level shape analyses Acquiring global maps of the environments is crucial for robots to localize and be able to navigate autonomously. Though there has been a lot of progress in achieving autonomous mobility, for e.g. as in DARPA grand-challenges of 2005 and 2007, the mapping problem itself remains to be unsolved which is essential for robust autonomy in hard cases like rescue arenas and collaborative exploration. In the second part I will present techniques for merging maps acquired by multiple and single robots. We developed physics-based energy minimization techniques and also shape based techniques for scalable merging of maps. Our shape based techniques are a product of combining of high-level vision techniques that exploit similarities among maps and strong statistical methods that can handle uncertainties in Bayesian sense.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.