Show simple item record

dc.creatorLetzter, ES
dc.date.accessioned2021-02-07T19:48:12Z
dc.date.available2021-02-07T19:48:12Z
dc.date.issued2001-01-01
dc.identifier.issn0747-7171
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/6113
dc.identifier.other470FZ (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/6131
dc.description.abstractWe describe an algorithmic test, using the "standard polynomial identity" (and elementary computational commutative algebra), for determining whether or not a finitely presented associative algebra has an irreducible n-dimensional representation. When n-dimensional irreducible representations do exist, our proposed procedure can (in principle) produce explicit constructions. © 2001 Academic Press.
dc.format.extent255-262
dc.language.isoen
dc.relation.haspartJournal of Symbolic Computation
dc.relation.isreferencedbyElsevier BV
dc.subjectmath.RA
dc.subjectmath.RA
dc.subjectmath.AC
dc.subjectmath.RT
dc.subject16-08;13P10
dc.titleConstructing irreducible representations of finitely presented algebras
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1006/jsco.2001.0445
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-07T19:48:09Z
refterms.dateFOA2021-02-07T19:48:12Z


Files in this item

Thumbnail
Name:
9910132v4.pdf
Size:
129.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record