Show simple item record

dc.creatorLetzter, ES
dc.date.accessioned2021-02-07T19:39:39Z
dc.date.available2021-02-07T19:39:39Z
dc.date.issued2003-01-01
dc.identifier.issn0021-2172
dc.identifier.issn1565-8511
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/6108
dc.identifier.other718CY (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/6126
dc.description.abstractLet R be an associative ring with identity. We study an elementary generalization of the classical Zariski topology, applied to the set of isomorphism classes of simple left R-modules (or, more generally, simple objects in a complete abelian category). Under this topology the points are closed, and when R is left noetherian the corresponding topological space is noetherian. If R is commutative (or PI, or FBN) the corresponding topological space is naturally homeomorphic to the maximal spectrum, equipped with the Zariski topology. When R is the first Weyl algebra (in characteristic zero) we obtain a one-dimensional irreducible noetherian topological space. Comparisons with topologies induced from those on A. L. Rosenberg's spectra are briefly noted.
dc.format.extent307-316
dc.language.isoen
dc.relation.haspartIsrael Journal of Mathematics
dc.relation.isreferencedbySpringer Science and Business Media LLC
dc.subjectmath.RA
dc.subjectmath.RA
dc.subjectmath.QA
dc.titleNoetherianity of the space of irreducible representations
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1007/BF02807203
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-07T19:39:36Z
refterms.dateFOA2021-02-07T19:39:39Z


Files in this item

Thumbnail
Name:
0106034v2.pdf
Size:
123.0Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record