TUScholarShare will be undergoing an upgrade from February 17th – March 4th, 2025. During this time, content in the repository will still be accessible for viewing and downloading, but no new content will be deposited to the repository. All deposit forms will remain functional and new content will continue to be accepted. However, new content submitted for deposit during this time will not be made live in the repository until the upgrade has been completed. If you have any questions, please contact scholarshare@temple.edu.

Show simple item record

dc.contributor.advisorWunder, Stephanie L.
dc.creatorBandegi, Sanaz
dc.date.accessioned2020-10-19T17:13:02Z
dc.date.available2020-10-19T17:13:02Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.12613/611
dc.description.abstractLipophilic dye probes are widely used for labelling of cells, organelles, liposomes, viruses and lipoproteins. The lipophilic dye diffuses in the membrane and stains the cell and cells even tolerate the lipophilic dye in high concentration. The fluorescence of styryl dyes increases after insertion into the hydrophobic environment of the lipid membrane compared their fluorescence in the aqueous phase solution. The alkyl chains of the fluorescent styryl dye probe insert into membranes and are used to understand their biophysical properties and their behavior in lipid bilayers. The mechanism of incorporation of the dyes into cell membranes, or vesicle model systems, is not resolved. In this study we used a modified dialkylaminostyryl fluorescent lipid, 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (DiA), replacing the I- counterion with the Cl- anion to make DiA-Cl increase hydration of the polar head and to enable self-assembling in water and formation of vesicles. Vesicles composed of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine)/DiA, DPPC (1,2-dipalmitoyl-sn-glycero-3- phosphatidylcholine) /DiA, DSPC (1,2-distearoyl-sn-glycero-3- phosphatidylcholine) /DiA, DMPE (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine)/DiA, DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine)/DiA and DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine)/DiA have been prepared in mole ratios between 100/0 to 0/100, in order to investigate the effects of chain length and headgroup type on chain packing and phase separation in these mixed amphiphilic systems, using nanocalorimetry, dynamic light scattering and fluorescence data, as well as confocal laser scanning microscopy (CLSM) and cryo-transmission electron microscopy (Cryo-TEM). In addition, we report the self-assembly of DiA-Cl, to form H-aggregates of lipid bilayers in aqueous solution, beyond a critical vesicle concentration. Lipid bilayers can be fused onto silica nanoparticles (NPs) to form supported lipid bilayer (SLB)-NPs. (SLB)-NPs have a varous interdisciplinary applications from medicine to environmental fields and agriculture sciences. Here, the lipids on the nanoparticles were used for two applications. One was to adsorb polycyclic aromatic hydrocarbons (PAHs) from the environment and the other was as vehicles for foliar delivery of nutrients to plants. Silica SLB nanoparticles can increase the solubility of Benzo[a]Pyrene (BaP) in order to extract the BaP from soil for in situ biodegradation. Initial studies were begun on the effect of foliar application of silica SLBs nanoparticles on plants. The SLBs to be used were prepared using both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DiA, in order to determine whether the lipid increased the entry of the silica into the plant leaves and whether the lipids also entered.
dc.format.extent210 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectChemistry, Analytical
dc.titleINTERACTION OF FLUORESCENT LIPID DYES WITH LIPID VESICLES AND SUPPORTED LIPID BILAYERS AND THEIR APPLICATIONS
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberValentine, Ann M.
dc.contributor.committeememberStrongin, Daniel R.
dc.contributor.committeememberIlies, Marc A.
dc.description.departmentChemistry
dc.relation.doihttp://dx.doi.org/10.34944/dspace/593
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
refterms.dateFOA2020-10-19T17:13:02Z
dc.embargo.lift08/15/2021


Files in this item

Thumbnail
Name:
Bandegi_temple_0225E_13851.pdf
Size:
2.987Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record