Show simple item record

dc.creatorGrabovsky, Y
dc.creatorMengesha, T
dc.date.accessioned2021-02-07T19:01:31Z
dc.date.available2021-02-07T19:01:31Z
dc.date.issued2007-01-01
dc.identifier.issn0944-2669
dc.identifier.issn1432-0835
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/6088
dc.identifier.other139RY (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/6106
dc.description.abstractThe paper introduces a general strategy for identifying strong local minimizers of variational functionals. It is based on the idea that any variation of the integral functional can be evaluated directly in terms of the appropriate parameterized measures. We demonstrate our approach on a problem of W 1,∞ sequential weak-*local minima - a slight weakening of the classical notion of strong local minima. We obtain the first quasiconvexity-based set of sufficient conditions for W 1,∞ sequential weak-*local minima. © Springer-Verlag 2007.
dc.format.extent59-83
dc.language.isoen
dc.relation.haspartCalculus of Variations and Partial Differential Equations
dc.relation.isreferencedbySpringer Science and Business Media LLC
dc.subjectmath.AP
dc.subjectmath.AP
dc.subjectmath.OC
dc.subject49K10
dc.titleDirect approach to the problem of strong local minima in calculus of variations
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1007/s00526-006-0056-7
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-07T19:01:29Z
refterms.dateFOA2021-02-07T19:01:32Z


Files in this item

Thumbnail
Name:
0509702v1.pdf
Size:
305.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record