Show simple item record

dc.creatorGil, JB
dc.creatorKrainer, T
dc.creatorMendoza, GA
dc.date.accessioned2021-02-07T18:58:51Z
dc.date.available2021-02-07T18:58:51Z
dc.date.issued2006-12-01
dc.identifier.issn0022-1236
dc.identifier.issn1096-0783
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/6087
dc.identifier.other099AN (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/6105
dc.description.abstractWe prove the existence of sectors of minimal growth for general closed extensions of elliptic cone operators under natural ellipticity conditions. This is achieved by the construction of a suitable parametrix and reduction to the boundary. Special attention is devoted to the clarification of the analytic structure of the resolvent. © 2006 Elsevier Inc. All rights reserved.
dc.format.extent1-55
dc.language.isoen
dc.relation.haspartJournal of Functional Analysis
dc.relation.isreferencedbyElsevier BV
dc.subjectresolvents
dc.subjectmanifolds with conical singularities
dc.subjectspectral theory
dc.subjectparametrices
dc.subjectboundary value problems
dc.titleResolvents of elliptic cone operators
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1016/j.jfa.2006.07.010
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-07T18:58:48Z
refterms.dateFOA2021-02-07T18:58:51Z


Files in this item

Thumbnail
Name:
0410176v1.pdf
Size:
495.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record