Show simple item record

dc.creatorGil, JB
dc.creatorKrainer, T
dc.creatorMendoza, GA
dc.date.accessioned2021-02-07T18:53:42Z
dc.date.available2021-02-07T18:53:42Z
dc.date.issued2007-01-01
dc.identifier.issn0008-414X
dc.identifier.issn1496-4279
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/6083
dc.identifier.other194YQ (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/6101
dc.description.abstractWe study the geometry of the set of closed extensions of index 0 of an elliptic differential cone operator and its model operator in connection with the spectra of the extensions, and we give a necessary and sufficient condition for the existence of rays of minimal growth for such operators. © Canadian Mathematical Society 2007.
dc.format.extent742-794
dc.language.isoen
dc.relation.haspartCanadian Journal of Mathematics
dc.relation.isreferencedbyCanadian Mathematical Society
dc.subjectresolvents
dc.subjectmanifolds with conical singularities
dc.subjectspectral theory
dc.subjectboundary value problems
dc.subjectGrassmannians
dc.titleGeometry and spectra of closed extensions of elliptic cone operators
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.4153/CJM-2007-033-7
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-07T18:53:39Z
refterms.dateFOA2021-02-07T18:53:42Z


Files in this item

Thumbnail
Name:
0410178v2.pdf
Size:
519.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record