• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Efficient state transfer in an ultracold dense gas of heteronuclear molecules

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    0802.1093v1.pdf
    Size:
    327.4Kb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2008-01-01
    Author
    Ospelkaus, S
    Pe'er, A
    Ni, KK
    Zirbel, JJ
    Neyenhuis, B
    Kotochigova, S
    Julienne, PS
    Ye, J
    Jin, DS
    Subject
    physics.atom-ph
    physics.atom-ph
    cond-mat.other
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/6095
    
    Metadata
    Show full item record
    DOI
    10.1038/nphys997
    Abstract
    Polar molecules have bright prospects for novel quantum gases with long-range and anisotropic interactions, and could find uses in quantum information science and in precision measurements. However, high-density clouds of ultracold polar molecules have so far not been produced. Here, we report a key step towards this goal. We start from an ultracold dense gas of loosely bound 40 K 87 Rb Feshbach molecules with typical binding energies of a few hundred kilohertz, and coherently transfer these molecules in a single transfer step into a vibrational level of the ground-state molecular potential bound by more than 10 GHz. Starting with a single initial state prepared with Feshbach association, we achieve a transfer efficiency of 84%. Given favourable Franck-Condon factors, the presented technique can be extended to access much more deeply bound vibrational levels and those exhibiting a significant dipole moment. © 2008 Macmillan Publishers Limited. All rights reserved.
    Citation to related work
    Springer Science and Business Media LLC
    Has part
    Nature Physics
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/6077
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.