Show simple item record

dc.creatorLetzter, ES
dc.date.accessioned2021-02-07T18:23:15Z
dc.date.available2021-02-07T18:23:15Z
dc.date.issued2008-12-01
dc.identifier.issn0021-8693
dc.identifier.issn1090-266X
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/6063
dc.identifier.urihttp://hdl.handle.net/20.500.12613/6081
dc.description.abstractLet n be a positive integer, and let k be a field (of arbitrary characteristic) accessible to symbolic computation. We describe an algorithmic test for determining whether or not a finitely presented k-algebra R has infinitely many equivalence classes of semisimple representations R → Mn (k′), where k′ is the algebraic closure of k. The test reduces the problem to computational commutative algebra over k, via famous results of Artin, Procesi, and Shirshov. The test is illustrated by explicit examples, with n = 3. © 2008 Elsevier Inc. All rights reserved.
dc.format.extent3926-3934
dc.language.isoen
dc.relation.haspartJournal of Algebra
dc.relation.isreferencedbyElsevier BV
dc.subjectmath.RA
dc.subjectmath.RA
dc.subjectmath.AC
dc.subject16Z05 (Primary); 16R30, 13P10 (Secondary)
dc.titleDetecting infinitely many semisimple representations in a fixed finite dimension
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1016/j.jalgebra.2008.06.035
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-07T18:23:13Z
refterms.dateFOA2021-02-07T18:23:16Z


Files in this item

Thumbnail
Name:
0708.3190v3.pdf
Size:
160.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record