Finite surgeries on three-tangle pretzel knots
dc.creator | Futer, D | |
dc.creator | Ishikawa, M | |
dc.creator | Kabaya, Y | |
dc.creator | Mattman, TW | |
dc.creator | Shimokawa, K | |
dc.date.accessioned | 2021-02-07T18:15:32Z | |
dc.date.available | 2021-02-07T18:15:32Z | |
dc.date.issued | 2009-12-01 | |
dc.identifier.issn | 1472-2747 | |
dc.identifier.issn | 1472-2739 | |
dc.identifier.doi | http://dx.doi.org/10.34944/dspace/6058 | |
dc.identifier.other | 573NY (isidoc) | |
dc.identifier.uri | http://hdl.handle.net/20.500.12613/6076 | |
dc.description.abstract | We classify Dehn surgeries on (p,q,r) pretzel knots that result in a manifold of finite fundamental group. The only hyperbolic pretzel knots that admit nontrivial finite surgeries are (-2,3,7) and (-2,3,9). Agol and Lackenby's 6 -theorem reduces the argument to knots with small indices p,q,r. We treat these using the Culler-Shalen norm of the SL(2, C)-character variety. In particular, we introduce new techniques for demonstrating that boundary slopes are detected by the character variety. © 2009 Mathematical Sciences Publishers. | |
dc.format.extent | 743-771 | |
dc.language.iso | en | |
dc.relation.haspart | Algebraic and Geometric Topology | |
dc.relation.isreferencedby | Mathematical Sciences Publishers | |
dc.subject | math.GT | |
dc.subject | math.GT | |
dc.subject | 57M25; 57M05; 57M50 | |
dc.title | Finite surgeries on three-tangle pretzel knots | |
dc.type | Article | |
dc.type.genre | Journal Article | |
dc.relation.doi | 10.2140/agt.2009.9.743 | |
dc.ada.note | For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu | |
dc.date.updated | 2021-02-07T18:15:30Z | |
refterms.dateFOA | 2021-02-07T18:15:33Z |