Show simple item record

dc.creatorFuter, D
dc.creatorIshikawa, M
dc.creatorKabaya, Y
dc.creatorMattman, TW
dc.creatorShimokawa, K
dc.date.accessioned2021-02-07T18:15:32Z
dc.date.available2021-02-07T18:15:32Z
dc.date.issued2009-12-01
dc.identifier.issn1472-2747
dc.identifier.issn1472-2739
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/6058
dc.identifier.other573NY (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/6076
dc.description.abstractWe classify Dehn surgeries on (p,q,r) pretzel knots that result in a manifold of finite fundamental group. The only hyperbolic pretzel knots that admit nontrivial finite surgeries are (-2,3,7) and (-2,3,9). Agol and Lackenby's 6 -theorem reduces the argument to knots with small indices p,q,r. We treat these using the Culler-Shalen norm of the SL(2, C)-character variety. In particular, we introduce new techniques for demonstrating that boundary slopes are detected by the character variety. © 2009 Mathematical Sciences Publishers.
dc.format.extent743-771
dc.language.isoen
dc.relation.haspartAlgebraic and Geometric Topology
dc.relation.isreferencedbyMathematical Sciences Publishers
dc.subjectmath.GT
dc.subjectmath.GT
dc.subject57M25; 57M05; 57M50
dc.titleFinite surgeries on three-tangle pretzel knots
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.2140/agt.2009.9.743
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-07T18:15:30Z
refterms.dateFOA2021-02-07T18:15:33Z


Files in this item

Thumbnail
Name:
0809.4278v2.pdf
Size:
473.9Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record