• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Purifying selection can obscure the ancient age of viral lineages

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Purifying selection can obscure ...
    Size:
    1.545Mb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2011-12-01
    Author
    Wertheim, JO
    Kosakovsky Pond, SL
    Subject
    measles virus
    rinderpest virus
    Ebola virus
    avian influenza virus
    molecular clock
    substitution rate
    codon model
    purifying selection
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/6033
    
    Metadata
    Show full item record
    DOI
    10.1093/molbev/msr170
    Abstract
    Statistical methods for molecular dating of viral origins have been used extensively to infer the time of most common recent ancestor for many rapidly evolving pathogens. However, there are a number of cases, in which epidemiological, historical, or genomic evidence suggests much older viral origins than those obtained via molecular dating. We demonstrate how pervasive purifying selection can mask the ancient origins of recently sampled pathogens, in part due to the inability of nucleotide-based substitution models to properly account for complex patterns of spatial and temporal variability in selective pressures. We use codon-based substitution models to infer the length of branches in viral phylogenies; these models produce estimates that are often considerably longer than those obtained with traditional nucleotide-based substitution models. Correcting the apparent underestimation of branch lengths suggests substantially older origins for measles, Ebola, and avian influenza viruses. This work helps to reconcile some of the inconsistencies between molecular dating and other types of evidence concerning the age of viral lineages. © 2011 The Author.
    Citation to related work
    Oxford University Press (OUP)
    Has part
    Molecular Biology and Evolution
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/6015
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.