Interior gradient estimates for solutions to the linearized Monge-Ampère equation
dc.creator | Gutiérrez, CE | |
dc.creator | Nguyen, T | |
dc.date.accessioned | 2021-02-04T21:32:45Z | |
dc.date.available | 2021-02-04T21:32:45Z | |
dc.date.issued | 2011-11-10 | |
dc.identifier.issn | 0001-8708 | |
dc.identifier.issn | 1090-2082 | |
dc.identifier.doi | http://dx.doi.org/10.34944/dspace/6003 | |
dc.identifier.other | 824HS (isidoc) | |
dc.identifier.uri | http://hdl.handle.net/20.500.12613/6021 | |
dc.description.abstract | Let φ be a convex function on a convex domain Sigma;CRn, n≥1. The corresponding linearized Monge-Ampère equation is. trace(φD2u)=f, where φ:=detD2φ(D2φ)-1 is the matrix of cofactors of D2φ. We establish interior Hölder estimates for derivatives of solutions to such equation when the function f on the right-hand side belongs to Lp(Ω) for some p>n. The function φ is assumed to be such that φbSigma;C(Ω) with φ=0 on ∂. Ω and the Monge-Ampère measure detD2φ is given by a density gSigma;C(Sigma;) which is bounded away from zero and infinity. © 2011 Elsevier Inc. | |
dc.format.extent | 2034-2070 | |
dc.language.iso | en | |
dc.relation.haspart | Advances in Mathematics | |
dc.relation.isreferencedby | Elsevier BV | |
dc.subject | Monge-Ampere equations | |
dc.subject | Holder estimates | |
dc.title | Interior gradient estimates for solutions to the linearized Monge-Ampère equation | |
dc.type | Article | |
dc.type.genre | Journal Article | |
dc.relation.doi | 10.1016/j.aim.2011.06.035 | |
dc.ada.note | For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu | |
dc.date.updated | 2021-02-04T21:32:43Z | |
refterms.dateFOA | 2021-02-04T21:32:46Z |