Show simple item record

dc.creatorGutiérrez, CE
dc.creatorNguyen, T
dc.date.accessioned2021-02-04T21:32:45Z
dc.date.available2021-02-04T21:32:45Z
dc.date.issued2011-11-10
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/6003
dc.identifier.other824HS (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/6021
dc.description.abstractLet φ be a convex function on a convex domain Sigma;CRn, n≥1. The corresponding linearized Monge-Ampère equation is. trace(φD2u)=f, where φ:=detD2φ(D2φ)-1 is the matrix of cofactors of D2φ. We establish interior Hölder estimates for derivatives of solutions to such equation when the function f on the right-hand side belongs to Lp(Ω) for some p>n. The function φ is assumed to be such that φbSigma;C(Ω) with φ=0 on ∂. Ω and the Monge-Ampère measure detD2φ is given by a density gSigma;C(Sigma;) which is bounded away from zero and infinity. © 2011 Elsevier Inc.
dc.format.extent2034-2070
dc.language.isoen
dc.relation.haspartAdvances in Mathematics
dc.relation.isreferencedbyElsevier BV
dc.subjectMonge-Ampere equations
dc.subjectHolder estimates
dc.titleInterior gradient estimates for solutions to the linearized Monge-Ampère equation
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1016/j.aim.2011.06.035
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-04T21:32:43Z
refterms.dateFOA2021-02-04T21:32:46Z


Files in this item

Thumbnail
Name:
1208.5097v1.pdf
Size:
359.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record