Anisotropy-induced Feshbach resonances in a quantum dipolar gas of highly magnetic atoms
Genre
Journal ArticleDate
2012-09-07Author
Petrov, ATiesinga, E
Kotochigova, S
Permanent link to this record
http://hdl.handle.net/20.500.12613/5992
Metadata
Show full item recordDOI
10.1103/PhysRevLett.109.103002Abstract
We explore the anisotropic nature of Feshbach resonances in the collision between ultracold highly magnetic submerged-shell dysprosium atoms in their energetically lowest magnetic sublevel, which can only occur due to couplings to rotating bound states. This is in contrast to well-studied alkali-metal atom collisions, where broadest (strongest) Feshbach resonances are hyperfine induced and due to rotationless bound states. Our first-principle coupled-channel calculation of the collisions between these spin-polarized bosonic dysprosium atoms reveals a strong interplay between the anisotropies in the dispersion and magnetic dipole-dipole interaction. The former anisotropy is absent in alkali-metal and chromium collisions. We show that both types of anisotropy significantly affect the Feshbach spectrum as a function of an external magnetic field. Effects of the electrostatic quadrupole-quadrupole interaction are small. Over a 20 mT magnetic field range, we predict about 10 Feshbach resonances and show that the resonance locations depend on the dysprosium isotope. © 2012 American Physical Society.Citation to related work
American Physical Society (APS)Has part
Physical Review LettersADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5974