• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Anisotropic polarizability of ultracold polar K40Rb87 molecules

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1209.2226v2.pdf
    Size:
    470.7Kb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2012-12-04
    Author
    Neyenhuis, B
    Yan, B
    Moses, SA
    Covey, JP
    Chotia, A
    Petrov, A
    Kotochigova, S
    Ye, J
    Jin, DS
    Subject
    physics.atom-ph
    physics.atom-ph
    cond-mat.quant-gas
    quant-ph
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5981
    
    Metadata
    Show full item record
    DOI
    10.1103/PhysRevLett.109.230403
    Abstract
    We report the measurement of the anisotropic ac polarizability of ultracold polar K40Rb87 molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Although the polarizability can vary by more than 30%, a "magic" angle between the laser polarization and the quantization axis is found where the polarizability of the |N=0,mN=0? and the |N=1,mN=0? states match. At this angle, rotational decoherence due to the mismatch in trapping potentials is eliminated, and we observe a sharp increase in the coherence time. This paves the way for precise spectroscopic measurements and coherent manipulations of rotational states as a tool in the creation and probing of novel quantum many-body states of polar molecules. © 2012 American Physical Society.
    Citation to related work
    American Physical Society (APS)
    Has part
    Physical Review Letters
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5963
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.