Show simple item record

dc.creatorStover, M
dc.date.accessioned2021-02-04T19:50:20Z
dc.date.available2021-02-04T19:50:20Z
dc.date.issued2013-05-13
dc.identifier.issn1465-3060
dc.identifier.issn1364-0380
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/5944
dc.identifier.other176KZ (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/5962
dc.description.abstractLet Y be a noncompact rank one locally symmetric space of finite volume. Then Y has a finite number e(Y) > 0 of topological ends. In this paper, we show that for any n ∈ N, the Y with e(Y) ≥ n that are arithmetic fall into finitely many commensurability classes. In particular, there is a constant cn such that n-cusped arithmetic orbifolds do not exist in dimension greater than cn. We make this explicit for one-cusped arithmetic hyperbolic n-orbifolds and prove that none exist for n ≥ 30.
dc.format.extent905-924
dc.language.isoen
dc.relation.haspartGeometry and Topology
dc.relation.isreferencedbyMathematical Sciences Publishers
dc.subjectmath.GT
dc.subjectmath.GT
dc.subjectmath.DG
dc.subjectmath.NT
dc.titleOn the number of ends of rank one locally symmetric spaces
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.2140/gt.2013.17.905
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-04T19:50:17Z
refterms.dateFOA2021-02-04T19:50:20Z


Files in this item

Thumbnail
Name:
1112.4495v2.pdf
Size:
234.0Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record