Show simple item record

dc.creatorFuter, D
dc.date.accessioned2021-02-03T20:26:23Z
dc.date.available2021-02-03T20:26:23Z
dc.date.issued2013-07-18
dc.identifier.issn1472-2747
dc.identifier.issn1472-2739
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/5931
dc.identifier.other257KL (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/5949
dc.description.abstractEvery Kauffman state σ of a link diagram D.K/ naturally defines a state surface Sσ whose boundary is K. For a homogeneous state σ, we show that K is a fibered link with fiber surface Sσ if and only if an associated graph G′ σ is a tree. As a corollary, it follows that for an adequate knot or link, the second and next-to-last coefficients of the Jones polynomial are the obstructions to certain state surfaces being fibers for K. This provides a dramatically simpler proof of a theorem of the author with Kalfagianni and Purcell.
dc.format.extent2799-2807
dc.language.isoen
dc.relation.haspartAlgebraic and Geometric Topology
dc.relation.isreferencedbyMathematical Sciences Publishers
dc.subjectmath.GT
dc.subjectmath.GT
dc.subject57M25, 57M27, 57M50
dc.titleFiber detection for state surfaces
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.2140/agt.2013.13.2799
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-03T20:26:21Z
refterms.dateFOA2021-02-03T20:26:24Z


Files in this item

Thumbnail
Name:
1201.1643v2.pdf
Size:
123.9Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record