Perturbed Toeplitz operators and radial determinantal processes
dc.creator | Ehrhardt, T | |
dc.creator | Rider, B | |
dc.date.accessioned | 2021-02-03T20:05:23Z | |
dc.date.available | 2021-02-03T20:05:23Z | |
dc.date.issued | 2013-11-01 | |
dc.identifier.issn | 0246-0203 | |
dc.identifier.doi | http://dx.doi.org/10.34944/dspace/5913 | |
dc.identifier.other | 237AG (isidoc) | |
dc.identifier.uri | http://hdl.handle.net/20.500.12613/5931 | |
dc.description.abstract | We study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix. © Association des Publications de l'Institut Henri Poincaré, 2013. | |
dc.format.extent | 934-960 | |
dc.language.iso | en | |
dc.relation.haspart | Annales de l'institut Henri Poincare (B) Probability and Statistics | |
dc.relation.isreferencedby | Institute of Mathematical Statistics | |
dc.subject | Random matrices | |
dc.subject | Determinantal processes | |
dc.subject | Toeplitz operators | |
dc.subject | Szego-Widom limit theorem | |
dc.title | Perturbed Toeplitz operators and radial determinantal processes | |
dc.type | Article | |
dc.type.genre | Journal Article | |
dc.relation.doi | 10.1214/12-AIHP501 | |
dc.ada.note | For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu | |
dc.date.updated | 2021-02-03T20:05:20Z | |
refterms.dateFOA | 2021-02-03T20:05:23Z |