Show simple item record

dc.creatorEhrhardt, T
dc.creatorRider, B
dc.date.accessioned2021-02-03T20:05:23Z
dc.date.available2021-02-03T20:05:23Z
dc.date.issued2013-11-01
dc.identifier.issn0246-0203
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/5913
dc.identifier.other237AG (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/5931
dc.description.abstractWe study a class of rotation invariant determinantal ensembles in the complex plane; examples include the eigenvalues of Gaussian random matrices and the roots of certain families of random polynomials. The main result is a criterion for a central limit theorem to hold for angular statistics of the points. The proof exploits an exact formula relating the generating function of such statistics to the determinant of a perturbed Toeplitz matrix. © Association des Publications de l'Institut Henri Poincaré, 2013.
dc.format.extent934-960
dc.language.isoen
dc.relation.haspartAnnales de l'institut Henri Poincare (B) Probability and Statistics
dc.relation.isreferencedbyInstitute of Mathematical Statistics
dc.subjectRandom matrices
dc.subjectDeterminantal processes
dc.subjectToeplitz operators
dc.subjectSzego-Widom limit theorem
dc.titlePerturbed Toeplitz operators and radial determinantal processes
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1214/12-AIHP501
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-03T20:05:20Z
refterms.dateFOA2021-02-03T20:05:23Z


Files in this item

Thumbnail
Name:
euclid.aihp.1380718732.pdf
Size:
337.8Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record