Genre
Journal ArticleDate
2014-01-01Author
Futer, DSchleimer, S
Permanent link to this record
http://hdl.handle.net/20.500.12613/5923
Metadata
Show full item recordDOI
10.1353/ajm.2014.0012Abstract
Let F be a surface and suppose that φ: F →F is a pseudo-Anosov homeomorphism, fixing a puncture p of F. The mapping torus M =Mφ is hyperbolic and contains a maximal cusp C about the puncture p.We show that the area (and height) of the cusp torus ∂C is equal to the stable translation distance of φ acting on the arc complex A(F,p), up to an explicitly bounded multiplicative error. Our proof relies on elementary facts about the hyperbolic geometry of pleated surfaces. In particular, the proof of this theorem does not use any deep results from Teichmüller theory, Kleinian group theory, or the coarse geometry of A(F,p). A similar result holds for quasi-Fuchsian manifolds N ≅ F ×ℝ. In that setting, we find a combinatorial estimate for the area (and height) of the cusp annulus in the convex core of N, up to explicitly bounded multiplicative and additive error. As an application, we show that covers of punctured surfaces induce quasi-isometric embeddings of arc complexes. © 2014 by the authors and Johns Hopkins University Press.Citation to related work
Project MuseHas part
American Journal of MathematicsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5905