Show simple item record

dc.creatorGrabovsky, Y
dc.creatorTruskinovsky, L
dc.date.accessioned2021-02-03T18:43:31Z
dc.date.available2021-02-03T18:43:31Z
dc.date.issued2014-12-01
dc.identifier.issn0938-8974
dc.identifier.issn1432-1467
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/5845
dc.identifier.otherAT4NX (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/5863
dc.description.abstract© 2014, Springer Science+Business Media New York. Strong local minimizers with surfaces of gradient discontinuity appear in variational problems when the energy density function is not rank-one convex. In this paper we show that the stability of such surfaces is related to the stability outside the surface via a single jump relation that can be regarded as an interchange stability condition. Although this relation appears in the setting of equilibrium elasticity theory, it is remarkably similar to the well-known normality condition that plays a central role in classical plasticity theory.
dc.format.extent1125-1146
dc.language.isoen
dc.relation.haspartJournal of Nonlinear Science
dc.relation.isreferencedbySpringer Science and Business Media LLC
dc.subjectMartensitic
dc.subjectPhase transitions
dc.subjectQuasi convexity
dc.subjectPlasticity
dc.subjectNormality
dc.subjectElastic stability
dc.titleNormality Condition in Elasticity
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1007/s00332-014-9213-x
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-03T18:43:28Z
refterms.dateFOA2021-02-03T18:43:32Z


Files in this item

Thumbnail
Name:
1309.4708v1.pdf
Size:
816.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record