• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Normality Condition in Elasticity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1309.4708v1.pdf
    Size:
    816.3Kb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2014-12-01
    Author
    Grabovsky, Y
    Truskinovsky, L
    Subject
    Martensitic
    Phase transitions
    Quasi convexity
    Plasticity
    Normality
    Elastic stability
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5863
    
    Metadata
    Show full item record
    DOI
    10.1007/s00332-014-9213-x
    Abstract
    © 2014, Springer Science+Business Media New York. Strong local minimizers with surfaces of gradient discontinuity appear in variational problems when the energy density function is not rank-one convex. In this paper we show that the stability of such surfaces is related to the stability outside the surface via a single jump relation that can be regarded as an interchange stability condition. Although this relation appears in the setting of equilibrium elasticity theory, it is remarkably similar to the well-known normality condition that plays a central role in classical plasticity theory.
    Citation to related work
    Springer Science and Business Media LLC
    Has part
    Journal of Nonlinear Science
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5845
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.