Genre
Journal ArticleDate
2015-01-01Author
Krainer, TMendoza, GA
Permanent link to this record
http://hdl.handle.net/20.500.12613/5839
Metadata
Show full item recordDOI
10.4171/rmi/829Abstract
© European Mathematical Society. The general theory of boundary value problems for linear elliptic wedge operators (on smooth manifolds with boundary) leads naturally, even in the scalar case, to the need to consider vector bundles over the boundary together with general smooth fiberwise multiplicative group actions. These actions, essentially trivial (and therefore invisible) in the case of regular boundary value problems, are intimately connected with what passes for Poisson and trace operators, and to pseudodifferential boundary conditions in the more general situation. Here the part of the theory pertaining to pseudodifferential operators is presented in its entirety. The symbols for these are defined with the aid of an intertwining of the actions. Also presented here are the ancillary Sobolev spaces, an index theorem for the elliptic elements of the pseudodifferential calculus, and essential ingredients for analyzing boundary conditions of Atiyah-Patodi-Singer type in the more general theory.Citation to related work
European Mathematical Society Publishing HouseHas part
Revista Matematica IberoamericanaADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5821