Genre
Journal ArticleDate
2015-01-20Author
Makrides, CHazra, J
Pradhan, GB
Petrov, A
Kendrick, BK
González-Lezana, T
Balakrishnan, N
Kotochigova, S
Permanent link to this record
http://hdl.handle.net/20.500.12613/5823
Metadata
Show full item recordDOI
10.1103/PhysRevA.91.012708Abstract
© 2015 American Physical Society. A first principles study of the dynamics of Li6(2S)+Li6Yb174(2Σ+)→6Li2(1Σ+)+Yb174(1S) reaction is presented at cold and ultracold temperatures. The computations involve determination and analytic fitting of a three-dimensional potential energy surface for the Li2Yb system and quantum dynamics calculations of varying complexities, ranging from exact quantum dynamics within the close-coupling scheme, to statistical quantum treatment, and universal models. It is demonstrated that the two simplified methods yield zero-temperature limiting reaction rate coefficients in reasonable agreement with the full close-coupling calculations. The effect of the three-body term in the interaction potential is explored by comparing quantum dynamics results from a pairwise potential that neglects the three-body term to that derived from the full interaction potential. Inclusion of the three-body term in the close-coupling calculations was found to reduce the limiting rate coefficients by a factor of two. The reaction exoergicity populates vibrational levels as high as v=19 of the Li62 molecule in the limit of zero collision energy. Product vibrational distributions from the close-coupling calculations reveal sensitivity to inclusion of three-body forces in the interaction potential. Overall, the results indicate that a simplified model based on the long-range potential is able to yield reliable values of the total reaction rate coefficient in the ultracold limit but a more rigorous approach based on statistical quantum or quantum close-coupling methods is desirable when product rovibrational distribution is required.Citation to related work
American Physical Society (APS)Has part
Physical Review A - Atomic, Molecular, and Optical PhysicsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5805