Show simple item record

dc.creatorDolgushev, V
dc.creatorPaljug, B
dc.date.accessioned2021-02-03T17:36:46Z
dc.date.available2021-02-03T17:36:46Z
dc.date.issued2016-09-01
dc.identifier.issn2193-8407
dc.identifier.issn1512-2891
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/5769
dc.identifier.otherDV1UI (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/5787
dc.description.abstract© 2015, Tbilisi Centre for Mathematical Sciences. Recall that Tamarkin’s construction (Hinich, Forum Math 15(4):591–614, 2003, arXiv:math.QA/0003052; Tamarkin, 1998, arXiv:math/9803025) gives us a map from the set of Drinfeld associators to the set of homotopy classes of L∞ quasi-isomorphisms for Hochschild cochains of a polynomial algebra. Due to results of Drinfeld (Algebra i Analiz 2(4):149–181, 1990 and Willwacher Invent Math 200(3):671–760, 2015 both the source and the target of this map are equipped with natural actions of the Grothendieck–Teichmueller group GRT1. In this paper, we use the result from Paljug (JHRS, 2015, arXiv:1305.4699) to prove that this map from the set of Drinfeld associators to the set of homotopy classes of L∞ quasi-isomorphisms for Hochschild cochains is GRT1-equivariant.
dc.format.extent503-552
dc.language.isoen
dc.relation.haspartJournal of Homotopy and Related Structures
dc.relation.isreferencedbySpringer Science and Business Media LLC
dc.subjectFormality theorems
dc.subjectAlgebraic operads
dc.subjectAssociators
dc.titleTamarkin’s construction is equivariant with respect to the action of the Grothendieck–Teichmueller group
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1007/s40062-015-0115-x
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-03T17:36:44Z
refterms.dateFOA2021-02-03T17:36:47Z


Files in this item

Thumbnail
Name:
1402.7356v4.pdf
Size:
362.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record