A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory
Genre
Journal ArticleDate
2015-09-17Author
Bankura, ASantra, B
DiStasio, RA
Swartz, CW
Klein, ML
Wu, X
Permanent link to this record
http://hdl.handle.net/20.500.12613/5784
Metadata
Show full item recordDOI
10.1080/00268976.2015.1059959Abstract
© 2015 © 2015 Taylor & Francis. In this work, the solvation and electronic structure of the aqueous chloride ion solution was investigated using density functional theory (DFT) based ab initio molecular dynamics (AIMD). From an analysis of radial distribution functions, coordination numbers, and solvation structures, we found that exact exchange (Exx) and non-local van der Waals (vdW) interactions effectively weaken the interactions between the Cl- ion and the first solvation shell. With a Cl-O coordination number in excellent agreement with experiment, we found that most configurations generated with vdW-inclusive hybrid DFT exhibit sixfold coordinated distorted trigonal prism structures, which is indicative of a significantly disordered first solvation shell. By performing a series of band structure calculations on configurations generated from AIMD simulations with varying DFT potentials, we found that the solvated ion orbital energy levels (unlike the band structure of liquid water) strongly depend on the underlying molecular structures. In addition, these orbital energy levels were also significantly affected by the DFT functional employed for the electronic structure; as the fraction of Exx was increased, the gap between the highest occupied molecular orbital of Cl- and the valence band maximum of liquid water steadily increased towards the experimental value.Citation to related work
Informa UK LimitedHas part
Molecular PhysicsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5766