• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spectrally unstable domains

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    euclid.ijm.1488186017.pdf
    Size:
    244.9Kb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2015-12-01
    Author
    Mendoza, GA
    Subject
    math.FA
    math.FA
    Primary: 47B25, 47A10, Secondary: 47F05, 58J05, 35P05
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5758
    
    Metadata
    Show full item record
    DOI
    10.1215/ijm/1488186017
    Abstract
    © 2017 University of Illinois. Let H be a separable Hilbert space, Ac : Dc ⊂ H →H a densely defined unbounded operator, bounded from below, let Dmin be the domain of the closure of Ac and Dmax that of the adjoint. Assume that Dmax with the graph norm is compactly contained in H and that Dmin has finite positive codimension in Dmax. Then the set of domains of selfadjoint extensions of Ac has the structure of a finite-dimensional manifold (Formula Presented) and the spectrum of each of its selfadjoint extensions is bounded from below. If ζ is strictly below the spectrum of A with a given domain (Formula Presented), then ζ is not in the spectrum of A with domain (Formula Presented) near D0. But (Formula Presented) contains elements D0 with the property that for every neighborhood U of D0 and every ζ ∈ R there is D∈U such that spec(AD) ∩ (−∞, ζ) ≠ Ø. We characterize these “spectrally unstable” domains as being those satisfying a nontrivial relation with the domain of the Friedrichs extension of Ac.
    Citation to related work
    Duke University Press
    Has part
    Illinois Journal of Mathematics
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5740
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.