• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems with variational characterizations. I. extreme eigenvalues

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1504.02811v1.pdf
    Size:
    939.8Kb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2016-01-01
    Author
    Szyld, DB
    Xue, F
    Subject
    Nonlinear Hermitian eigenproblems
    variational principle
    preconditioned conjugate gradient
    convergence analysis
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5749
    
    Metadata
    Show full item record
    DOI
    10.1090/mcom/3083
    Abstract
    © 2016 American Mathematical Society. Efficient computation of extreme eigenvalues of large-scale linear Hermitian eigenproblems can be achieved by preconditioned conjugate gradient (PCG) methods. In this paper, we study PCG methods for computing extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T(λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG method, including its global and asymptotic convergence. We propose several variants of single-vector and block PCG methods with de- flation for computing multiple eigenvalues, and compare them in arithmetic and memory cost. Variable indefinite preconditioning is shown to be effective to accelerate convergence when some desired eigenvalues are not close to the lowest or highest eigenvalue. The efficiency of variants of PCG is illustrated by numerical experiments. Overall, the locally optimal block preconditioned conjugate gradient (LOBPCG) is the most efficient method, as in the linear setting.
    Citation to related work
    American Mathematical Society (AMS)
    Has part
    Mathematics of Computation
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5731
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.