• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The detector system of the Daya Bay reactor neutrino experiment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1508.03943v2.pdf
    Size:
    6.137Mb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2016-03-01
    Author
    An, FP
    Bai, JZ
    Balantekin, AB
    Band, HR
    Beavis, D
    Beriguete, W
    Bishai, M
    Blyth, S
    Brown, RL
    Butorov, I
    Cao, D
    Cao, GF
    Cao, J
    Carr, R
    Cen, WR
    Chan, WT
    Chan, YL
    Chang, JF
    Chang, LC
    Chang, Y
    Chasman, C
    Chen, HY
    Chen, HS
    Chen, MJ
    Chen, QY
    Chen, SJ
    Chen, SM
    Chen, XC
    Chen, XH
    Chen, XS
    Chen, YX
    Chen, Y
    Cheng, JH
    Cheng, J
    Cheng, YP
    Cherwinka, JJ
    Chidzik, S
    Chow, K
    Chu, MC
    Cummings, JP
    De Arcos, J
    Deng, ZY
    Ding, XF
    Ding, YY
    Diwan, MV
    Dong, L
    Dove, J
    Draeger, E
    Du, XF
    Dwyer, DA
    Edwards, WR
    Ely, SR
    Fang, SD
    Fu, JY
    Fu, ZW
    Ge, LQ
    Ghazikhanian, V
    Gill, R
    Goett, J
    Gonchar, M
    Gong, GH
    Gong, H
    Gornushkin, YA
    Grassi, M
    Greenler, LS
    Gu, WQ
    Guan, MY
    Guo, RP
    Guo, XH
    Hackenburg, RW
    Hahn, RL
    Han, R
    Hans, S
    He, M
    He, Q
    He, WS
    Heeger, KM
    Heng, YK
    Higuera, A
    Hinrichs, P
    Ho, TH
    Hoff, M
    Hor, YK
    Hsiung, YB
    Hu, BZ
    Hu, LM
    Hu, LJ
    Hu, T
    Hu, W
    Huang, EC
    Huang, HZ
    Huang, HX
    Huang, PW
    Huang, X
    Huang, XT
    Huber, P
    Hussain, G
    Isvan, Z
    Jaffe, DE
    Jaffke, P
    Show allShow less
    Subject
    Neutrino oscillation
    Neutrino mixing
    Reactor
    Daya Bay
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5733
    
    Metadata
    Show full item record
    DOI
    10.1016/j.nima.2015.11.144
    Abstract
    © 2015 Elsevier B.V. All rights reserved. The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin22θ13 and the effective mass splitting Δmee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.
    Citation to related work
    Elsevier BV
    Has part
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5715
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Beam-energy dependence of identified two-particle angular correlations ins root s(NN)=7.7-200 GeV Au + Au collisions

      Adam, J; Adamczyk, L; Adams, JR; Adkins, JK; Agakishiev, G; Aggarwal, MM; Ahammed, Z; Alekseev, I; Anderson, DM; Aparin, A; Aschenauer, EC; Ashraf, MU; Atetalla, FG; Attri, A; Averichev, GS; Bairathi, V; Barish, K; Bassill, AJ; Behera, A; Bellwied, R; Bhasin, A; Bielcik, J; Bielcikova, J; Bland, LC; Bordyuzhin, IG; Brandenburg, JD; Brandin, AV; Butterworth, J; Caines, H; Sanchez, M Calderon de la Barca; Cebra, D; Chakaberia, I; Chaloupka, P; Chan, BK; Chang, F-H; Chang, Z; Chankova-Bunzarova, N; Chatterjee, A; Chen, D; Chen, JH; Chen, X; Cheng, J; Cherney, M; Chevalier, M; Choudhury, S; Christie, W; Crawford, HJ; Csanad, M; Das, S; Daugherity, M; Dedovich, TG; Deppner, IM; Derevschikov, AA; Didenko, L; Dong, X; Drachenberg, JL; Dunlop, JC; Edmonds, T; Elsey, N; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Ewigleben, J; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, CJ; Feng, Y; Filip, P; Finch, E; Fisyak, Y; Francisco, A; Fulek, L; Gagliardi, CA; Galatyuk, T; Geurts, F; Gibson, A; Gopal, K; Grosnick, D; Guryn, W; Hamad, AI; Hamed, A; Harris, JW; He, W; He, X; Heppelmann, S; Herrmann, N; Hoffman, E; Holub, L; Hong, Y; Horvat, S; Hu, Y; Huang, B; Huang, HZ; Huang, SL; Huang, T; Huang, X; Humanic, TJ; Huo, P; Igo, G; Isenhower, D; Jacobs, WW; Jena, C; Jentsch, A; Ji, Y; Jia, J; Jiang, K; Jowzaee, S; Ju, X; Judd, EG; Kabana, S; Kabir, ML; Kagamaster, S; Kalinkin, D; Kang, K; Kapukchyan, D; Kauder, K; Ke, HW; Keane, D; Kechechyan, A; Kelsey, M; Khyzhniak, YV; Kikola, DP; Kim, C; Kincses, D; Kinghorn, TA; Kisel, I; Kiselev, A; Kisiel, A; Kocan, M; Kochenda, L; Kosarzewski, LK; Kramarik, L; Kravtsov, P; Krueger, K; Mudiyanselage, N Kulathunga; Kumar, L; Elayavalli, R Kunnawalkam; Kwasizur, JH; Lacey, R; Lan, S; Landgraf, JM; Lauret, J; Lebedev, A; Lednicky, R; Lee, JH; Leung, YH; Li, C; Li, W; Li, X; Li, Y; Liang, Y; Licenik, R; Lin, T; Lin, Y; Lisa, MA; Liu, F; Liu, H; Liu, P; Liu, T; Liu, X; Liu, Y; Liu, Z; Ljubicic, T; Llope, WJ; Lomnitz, M; Longacre, RS; Lukow, NS; Luo, S; Luo, X; Ma, GL; Ma, L; Ma, R; Ma, YG; Magdy, N; Majka, R; Mallick, D; Margetis, S; Markert, C; Matis, HS; Matonoha, O; Mazer, JA; Meehan, K; Mei, JC; Minaev, NG; Mioduszewski, S; Mohanty, B; Mondal, MM; Mooney, I; Moravcova, Z; Morozov, DA; Nagy, M; Nam, JD; Nasim, Md; Nayak, K; Neff, D; Nelson, JM; Nemes, DB; Nie, M; Nigmatkulov, G; Niida, T; Nogach, LV; Nonaka, T; Odyniec, G; Ogawa, A; Oh, S; Okorokov, VA; Page, BS; Pak, R; Pandav, A; Panebratsev, Y; Pawlik, B; Pawlowska, D; Pei, H; Perkins, C; Pinsky, L; Pinter, RL; Pluta, J; Porter, J; Posik, M; Pruthi, NK; Przybycien, M; Putschke, J; Qiu, H; Quintero, A; Radhakrishnan, SK; Ramachandran, S; Ray, RL; Reed, R; Ritter, HG; Roberts, JB; Rogachevskiy, OV; Romero, JL; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, NR; Sako, H; Salur, S; Sandweiss, J; Sato, S; Schmidke, WB; Schmitz, N; Schweid, BR; Seck, F; Seger, J; Sergeeva, M; Seto, R; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, PV; Shao, M; Shen, F; Shen, WQ; Shi, SS; Shou, QY; Sichtermann, EP; Sikora, R; Simko, M; Singh, J; Singha, S; Smirnov, N; Solyst, W; Sorensen, P; Spinka, HM; Srivastava, B; Stanislaus, TDS; Stefaniak, M; Stewart, DJ; Strikhanov, M; Stringfellow, B; Suaide, AAP; Sumbera, M; Summa, B; Sun, XM; Sun, Y; Surrow, B; Svirida, DN; Szymanski, P; Tang, AH; Tang, Z; Taranenko, A; Tarnowsky, T; Thomas, JH; Timmins, AR; Tlusty, D; Tokarev, M; Tomkiel, CA; Trentalange, S; Tribble, RE; Tribedy, P; Tripathy, SK; Tsai, OD; Tu, Z; Ullrich, T; Underwood, DG; Upsal, I; Van Buren, G; Vanek, J; Vasiliev, AN; Vassiliev, I; Videbaek, F; Vokal, S; Voloshin, SA; Wang, F; Wang, G; Wang, JS; Wang, P; Wang, Y; Wang, Z; Webb, JC; Weidenkaff, PC; Wen, L; Westfall, GD; Wieman, H; Wissink, SW; Witt, R; Wu, Y; Xiao, ZG; Xie, G; Xie, W; Xu, H; Xu, N; Xu, QH; Xu, YF; Xu, Y; Xu, Z; Yang, C; Yang, Q; Yang, S; Yang, Y; Yang, Z; Ye, Z; Yi, L; Yip, K; Zbroszczyk, H; Zha, W; Zhang, D; Zhang, S; Zhang, XP; Zhang, Y; Zhang, ZJ; Zhang, Z; Zhao, J; Zhong, C; Zhou, C; Zhu, X; Zhu, Z; Zurek, M; Zyzak, M; Collaboration, STAR (2020-01-30)
      The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.
    • Thumbnail

      First Observation of the Directed Flow of D-0 and <(D-0)over bar> in Au +Au Collisions at root s(NN)=200 GeV

      Adam, J; Adamczyk, L; Adams, JR; Adkins, JK; Agakishiev, G; Aggarwal, MM; Ahammed, Z; Alekseev, I; Anderson, DM; Aoyama, R; Aparin, A; Aschenauer, EC; Ashraf, MU; Atetalla, FG; Attri, A; Averichev, GS; Bairathi, V; Barish, K; Bassill, AJ; Behera, A; Bellwied, R; Bhasin, A; Bhati, AK; Bielcik, J; Bielcikova, J; Bland, LC; Bordyuzhin, IG; Brandenburg, JD; Brandin, AV; Bryslawskyj, J; Bunzarov, I; Butterworth, J; Caines, H; Sanchez, M Caldern de la Barca; Cebra, D; Chakaberia, I; Chaloupka, P; Chan, BK; Chang, F-H; Chang, Z; Chankova-Bunzarova, N; Chatterjee, A; Chattopadhyay, S; Chen, JH; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, HJ; Csanad, M; Das, S; Dedovich, TG; Deppner, IM; Derevschikov, AA; Didenko, L; Dilks, C; Dong, X; Drachenberg, JL; Dunlop, JC; Edmonds, T; Elsey, N; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Ewigleben, J; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Y; Filip, P; Finch, E; Fisyak, Y; Fulek, L; Gagliardi, CA; Galatyuk, T; Geurts, F; Gibson, A; Gopal, K; Greiner, L; Grosnick, D; Gupta, A; Guryn, W; Hamad, AI; Hamed, A; Harris, JW; He, L; Heppelmann, S; Herrmann, N; Holub, L; Hong, Y; Horvat, S; Huang, B; Huang, HZ; Huang, SL; Huang, T; Huang, X; Humanic, TJ; Huo, P; Igo, G; Jacobs, WW; Jena, C; Jentsch, A; Ji, Y; Jia, J; Jiang, K; Jowzaee, S; Ju, X; Judd, EG; Kabana, S; Kagamaster, S; Kalinkin, D; Kang, K; Kapukchyan, D; Kauder, K; Ke, HW; Keane, D; Kechechyan, A; Kelsey, M; Khyzhniak, YV; Kikola, DP; Kim, C; Kinghorn, TA; Kisel, I; Kisiel, A; Kocan, M; Kochenda, L; Kosarzewski, LK; Kramarik, L; Kravtsov, P; Krueger, K; Mudiyanselage, N Kulathunga; Kumar, L; Elayavalli, R Kunnawalkam; Kwasizur, JH; Lacey, R; Landgraf, JM; Lauret, J; Lebedev, A; Lednicky, R; Lee, JH; Li, C; Li, W; Li, X; Li, Y; Liang, Y; Licenik, R; Lin, T; Lipiec, A; Lisa, MA; Liu, F; Liu, H; Liu, P; Liu, T; Liu, X; Liu, Y; Liu, Z; Ljubicic, T; Llope, WJ; Lomnitz, M; Longacre, RS; Luo, S; Luo, X; Ma, GL; Ma, L; Ma, R; Ma, YG; Magdy, N; Majka, R; Mallick, D; Margetis, S; Markert, C; Matis, HS; Matonoha, O; Mazer, JA; Meehan, K; Mei, JC; Minaev, NG; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, MM; Mooney, I; Moravcova, Z; Morozov, DA; Nasim, Md; Nayak, K; Nelson, JM; Nemes, DB; Nie, M; Nigmatkulov, G; Niida, T; Nogach, LV; Nonaka, T; Odyniec, G; Ogawa, A; Oh, S; Okorokov, VA; Page, BS; Pak, R; Panebratsev, Y; Pawlik, B; Pawlowska, D; Pei, H; Perkins, C; Pinter, RL; Pluta, J; Porter, J; Posik, M; Pruthi, NK; Przybycien, M; Putschke, J; Quintero, A; Radhakrishnan, SK; Ramachandran, S; Ray, RL; Reed, R; Ritter, HG; Roberts, JB; Rogachevskiy, OV; Romero, JL; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, NR; Sahu, PK; Salur, S; Sandweiss, J; Schambach, J; Schmidke, WB; Schmitz, N; Schweid, BR; Seck, F; Seger, J; Sergeeva, M; Seto, R; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, PV; Shao, M; Shen, F; Shen, WQ; Shi, SS; Shou, QY; Sichtermann, EP; Siejka, S; Sikora, R; Simko, M; Singh, J; Singha, S; Smirnov, D; Smirnov, N; Solyst, W; Sorensen, P; Spinka, HM; Srivastava, B; Stanislaus, TDS; Stefaniak, M; Stewart, DJ; Strikhanov, M; Stringfellow, B; Suaide, AAP; Sugiura, T; Sumbera, M; Summa, B; Sun, XM; Sun, Y; Surrow, B; Svirida, DN; Szelezniak, MA; Szymanski, P; Tang, AH; Tang, Z; Taranenko, A; Tarnowsky, T; Tawfik, A; Thomas, JH; Timmins, AR; Tlusty, D; Tokarev, M; Tomkiel, CA; Trentalange, S; Tribble, RE; Tribedy, P; Tripathy, SK; Tsai, OD; Tu, B; Tu, Z; Ullrich, T; Underwood, DG; Upsal, I; Van Buren, G; Vanek, J; Vasiliev, AN; Vassiliev, I; Videbaek, F; Vokal, S; Voloshin, SA; Wang, F; Wang, G; Wang, P; Wang, Y; Webb, JC; Wen, L; Westfall, GD; Wieman, H; Wissink, SW; Witt, R; Wu, Y; Xiao, ZG; Xie, G; Xie, W; Xu, H; Xu, N; Xu, QH; Xu, YF; Xu, Z; Yang, C; Yang, Q; Yang, S; Yang, Y; Yang, Z; Ye, Z; Ye, Z; Yi, L; Yip, K; Zbroszczyk, H; Zha, W; Zhang, D; Zhang, L; Zhang, S; Zhang, XP; Zhang, Y; Zhang, Z; Zhao, J; Zhong, C; Zhou, C; Zhu, X; Zhu, Z; Zurek, M; Zyzak, M; Collaboration, STAR (2019-10-16)
      We report the first measurement of rapidity-odd directed flow (v_{1}) for D^{0} and D^{0}[over ¯] mesons at midrapidity (|y|<0.8) in Au+Au collisions at sqrt[s_{NN}]=200  GeV using the STAR detector at the Relativistic Heavy Ion Collider. In 10-80% Au+Au collisions, the slope of the v_{1} rapidity dependence (dv_{1}/dy), averaged over D^{0} and D^{0}[over ¯] mesons, is -0.080±0.017(stat)±0.016(syst) for transverse momentum p_{T} above 1.5  GeV/c. The absolute value of D^{0} meson dv_{1}/dy is about 25 times larger than that for charged kaons, with 3.4σ significance. These data give a unique insight into the initial tilt of the produced matter, and offer constraints on the geometric and transport parameters of the hot QCD medium created in relativistic heavy-ion collisions.
    • Thumbnail

      Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au + Au collisions

      Adam, J; Adamczyk, L; Adams, JR; Adkins, JK; Agakishiev, G; Aggarwal, MM; Ahammed, Z; Alekseev, I; Anderson, DM; Aoyama, R; Aparin, A; Arkhipkin, D; Aschenauer, EC; Ashraf, MU; Atetalla, F; Attri, A; Averichev, GS; Bairathi, V; Barish, K; Bassill, AJ; Behera, A; Bellwied, R; Bhasin, A; Bhati, AK; Bielcik, J; Bielcikova, J; Bland, LC; Bordyuzhin, IG; Brandenburg, JD; Brandin, AV; Bryslawskyj, J; Bunzarov, I; Butterworth, J; Caines, H; Calderón De La Barca Sánchez, M; Cebra, D; Chakaberia, I; Chaloupka, P; Chan, BK; Chang, FH; Chang, Z; Chankova-Bunzarova, N; Chatterjee, A; Chattopadhyay, S; Chen, JH; Chen, X; Cheng, J; Cherney, M; Christie, W; Crawford, HJ; Csanád, M; Das, S; Dedovich, TG; Deppner, IM; Derevschikov, AA; Didenko, L; Dilks, C; Dong, X; Drachenberg, JL; Dunlop, JC; Edmonds, T; Elsey, N; Engelage, J; Eppley, G; Esha, R; Esumi, S; Evdokimov, O; Ewigleben, J; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Y; Filip, P; Finch, E; Fisyak, Y; Fulek, L; Gagliardi, CA; Galatyuk, T; Geurts, F; Gibson, A; Grosnick, D; Gupta, A; Guryn, W; Hamad, AI; Hamed, A; Harris, JW; He, L; Heppelmann, S; Heppelmann, S; Herrmann, N; Holub, L; Hong, Y; Horvat, S; Huang, B; Huang, HZ; Huang, SL; Huang, T; Huang, X (2019-07-08)
      © 2019 American Physical Society. We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton, and net-kaon multiplicity distributions for the first phase of the beam energy scan program at the Relativistic Heavy Ion Collider. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at sNN= 7.7-200 GeV. Within the available acceptance of |η|<0.5, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at sNN= 200 GeV and change to positive at the lowest collision energy. Model calculations based on nonthermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the quantum chromodynamics phase diagram, constrain hadron resonance gas model calculations and provide new insights on the energy dependence of baryon-strangeness correlations.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.