Genre
Journal ArticleDate
2016-06-01Author
Krainer, TMendoza, GA
Permanent link to this record
http://hdl.handle.net/20.500.12613/5717
Metadata
Show full item recordDOI
10.1353/ajm.2016.0022Abstract
© 2016 by Johns Hopkins University Press. We develop an elliptic theory based in L2 of boundary value problems for general wedge differential operators of first order under only mild assumptions on the boundary spectrum. In particular, we do not require the indicial roots to be constant along the base of the boundary fibration. Our theory includes as a special case the classical theory of elliptic boundary value problems for first order operators with and without the Shapiro-Lopatinskii condition, and can be thought of as a natural extension of that theory to the geometrically and analytically relevant class of wedge operators. Wedge operators arise in the global analysis on manifolds with incomplete edge singularities. Our theory settles, in the first order case, the long-standing open problem to develop a robust elliptic theory of boundary value problems for such operators.Citation to related work
Project MuseHas part
American Journal of MathematicsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5699