Show simple item record

dc.creatorDi Cerbo, LF
dc.creatorStover, M
dc.date.accessioned2021-02-03T16:13:26Z
dc.date.available2021-02-03T16:13:26Z
dc.date.issued2016-06-01
dc.identifier.issn0026-2285
dc.identifier.issn1945-2365
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/5697
dc.identifier.otherDQ8HG (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/5715
dc.description.abstract© 2016, University of Michigan. All rights reserved. We study the number of distinct ways in which a smooth projective surface X can be realized as a smooth toroidal compactification of a ball quotient. It follows from work of Hirzebruch that there are infinitely many distinct ball quotients with birational smooth toroidal compactifications. We take this to its natural extreme by constructing arbitrarily large families of distinct ball quotients with biholomorphic smooth toroidal compactifications.
dc.format.extent441-447
dc.language.isoen
dc.relation.haspartMichigan Mathematical Journal
dc.relation.isreferencedbyMichigan Mathematical Journal
dc.subjectmath.AG
dc.subjectmath.AG
dc.subjectmath.DG
dc.subjectmath.GT
dc.titleMultiple realizations of varieties as ball quotient compactifications
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1307/mmj/1465329021
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-03T16:13:24Z
refterms.dateFOA2021-02-03T16:13:27Z


Files in this item

Thumbnail
Name:
1503.06712v2.pdf
Size:
120.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record