Genre
Journal ArticleDate
2016-06-08Author
Herrera, FSpano, FC
Permanent link to this record
http://hdl.handle.net/20.500.12613/5714
Metadata
Show full item recordDOI
10.1103/PhysRevLett.116.238301Abstract
© 2016 American Physical Society. The demonstration of strong and ultrastrong coupling regimes of cavity QED with polyatomic molecules has opened new routes to control chemical dynamics at the nanoscale. We show that strong resonant coupling of a cavity field with an electronic transition can effectively decouple collective electronic and nuclear degrees of freedom in a disordered molecular ensemble, even for molecules with high-frequency quantum vibrational modes having strong electron-vibration interactions. This type of polaron decoupling can be used to control chemical reactions. We show that the rate of electron transfer reactions in a cavity can be orders of magnitude larger than in free space for a wide class of organic molecular species.Citation to related work
American Physical Society (APS)Has part
Physical Review LettersADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5696