Show simple item record

dc.creatorLinowitz, B
dc.creatorStover, M
dc.date.accessioned2021-02-03T16:11:16Z
dc.date.available2021-02-03T16:11:16Z
dc.date.issued2016-09-01
dc.identifier.issn0003-889X
dc.identifier.issn1420-8938
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/5689
dc.identifier.otherDU2AN (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/5707
dc.description.abstract© 2016, Springer International Publishing. This paper gives a complete parametrization of the commensurability classes of totally geodesic subspaces of irreducible arithmetic quotients of Xa,b=(H2)a×(H3)b. A special case describes all Shimura subvarieties of type A 1 Shimura varieties. We produce, for any n≥ 1 , examples of manifolds/Shimura varieties with precisely n commensurability classes of totally geodesic submanifolds/Shimura subvarieties. This is in stark contrast with the previously studied cases of arithmetic hyperbolic 3-manifolds and quaternionic Shimura surfaces, where the presence of one commensurability class of geodesic submanifolds implies the existence of infinitely many classes.
dc.format.extent213-226
dc.language.isoen
dc.relation.haspartArchiv der Mathematik
dc.relation.isreferencedbySpringer Science and Business Media LLC
dc.subjectArithmetic lattice
dc.subjectShimura variety
dc.titleParametrizing Shimura subvarieties of A <inf>1</inf> Shimura varieties and related geometric problems
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1007/s00013-016-0944-9
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-03T16:11:13Z
refterms.dateFOA2021-02-03T16:11:16Z


Files in this item

Thumbnail
Name:
1510.03728v2.pdf
Size:
173.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record