• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Essays on Predicting and Explaining the Cross Section of Stock Returns

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXZhong-temple-0225E-13740.pdf
    Embargo:
    2021-05-17
    Size:
    1.676Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Zhong, Xun
    Advisor
    Rytchkov, Oleg
    Committee member
    Bakshi, Gurdip
    John, Kose
    Naveen, Lalitha
    Basu, Sudipta, 1965-
    Department
    Business Administration/Finance
    Subject
    Finance
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/567
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/549
    Abstract
    My dissertation consists of three chapters that study various aspects of stock return predictability. In the first chapter, I explore the interplay between the aggregation of information about stock returns and p-hacking. P-hacking refers to the practice of trying out various variables and model specifications until the result appears to be statistically significant, that is, the p-value of the test statistic is below a particular threshold. The standard information aggregation techniques exacerbate p-hacking by increasing the probability of the type I error. I propose an aggregation technique, which is a simple modification of 3PRF/PLS, that has an opposite property: the predictability tests applied to the combined predictor become more conservative in the presence of p-hacking. I quantify the advantages of my approach relative to the standard information aggregation techniques by using simulations. As an illustration, I apply the modified 3PRF/PLS to three sets of return predictors proposed in the literature and find that the forecasting ability of combined predictors in two cases cannot be explained by p-hacking. In the second chapter, I explore whether the stochastic discount factors (SDFs) of five characteristic-based asset pricing models can be explained by a large set of macroeconomic shocks. Characteristic-based factor models are linear models whose risk factors are returns on trading strategies based on firm characteristics. Such models are very popular in finance because of their superior ability to explain the cross-section of expected stock returns, but they are also criticized for their lack of interpretability. Each characteristic-based factor model is uniquely characterized by its SDF. To approximate the SDFs by a comprehensive set of 131 macroeconomic shocks without overfitting, I employ the elastic net regression, which is a machine learning technique. I find that the best combination of macroeconomic shocks can explain only a relatively small part of the variation in the SDFs, and the whole set of macroeconomic shocks approximates the SDFs not better than only few shocks. My findings suggest that behavioral factors and sentiment are important determinants of asset prices. The third chapter investigates whether investors efficiently aggregate analysts' earnings forecasts and whether combinations of the forecasts can predict announcement returns. The traditional consensus forecast of earnings used by academics and practitioners is the simple average of all analysts' earnings forecasts (Naive Consensus). However, this measure ignores that there exists a cross-sectional variation in analysts' forecast accuracy and persistence in such accuracy. I propose a consensus that is an accuracy-weighted average of all analysts' earnings forecasts (Smart Consensus). I find that Smart Consensus is a more accurate predictor of firms' earnings per share (EPS) than Naive Consensus. If investors weight forecasts efficiently according to the analysts' forecast accuracy, the market reaction to earnings announcements should be positively related to the difference between firms' reported earnings and Smart Consensus (Smart Surprise) and should be unrelated to the difference between firms' reported earnings and Naive Consensus (Naive Surprise). However, I find that market reaction to earnings announcements is positively related to both measures. Thus, investors do not aggregate forecasts efficiently. In addition, I find that the market reaction to Smart Surprise is stronger in stocks with higher institutional ownership. A trading strategy based on Expectation Gap, which is the difference between Smart and Naive Consensuses, generates positive risk-adjusted returns in the three-day window around earnings announcements.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.