Pyrite-induced hydroxyl radical formation and its effect on nucleic acids
Genre
Journal ArticleDate
2006-04-04Author
Cohn, CAMueller, S
Wimmer, E
Leifer, ND
Greenbaum, S
Strongin, DR
Schoonen, MAA
Permanent link to this record
http://hdl.handle.net/20.500.12613/5639
Metadata
Show full item recordDOI
10.1186/1467-4866-7-3Abstract
Background: Pyrite, the most abundant metal sulphide on Earth, is known to spontaneously form hydrogen peroxide when exposed to water. In this study the hypothesis that pyrite-induced hydrogen peroxide is transformed to hydroxyl radicals is tested. Results: Using a combination of electron spin resonance (ESR) spin-trapping techniques and scavenging reactions involving nucleic acids, the formation of hydroxyl radicals in pyrite/aqueous suspensions is demonstrated. The addition of EDTA to pyrite slurries inhibits the hydrogen peroxide-to-hydroxyl radical conversion, but does not inhibit the formation of hydrogen peroxide. Given the stability of EDTA chelation with both ferrous and ferric iron, this suggests that the addition of the EDTA prevents the transformation by chelation of dissolved iron species. Conclusion: While the exact mechanism or mechanisms of the hydrogen peroxide-to-hydroxyl radical conversion cannot be resolved on the basis of the experiments reported in this study, it is clear that the pyrite surface promotes the reaction. The formation of hydroxyl radicals is significant because they react nearly instantaneously with most organic molecules. This suggests that the presence of pyrite in natural, engineered, or physiological aqueous systems may induce the transformation of a wide range of organic molecules. This finding has implications for the role pyrite may play in aquatic environments and raises the question whether inhalation of pyrite dust contributes to the development of lung diseases. © 2006 Cohn et al; licensee BioMed Central Ltd.Citation to related work
Springer Science and Business Media LLCHas part
Geochemical TransactionsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5621