• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Length-dependent prediction of protein in intrinsic disorder

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Length-dependent prediction of ...
    Size:
    522.7Kb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2006-04-17
    Author
    Peng, K
    Radivojac, P
    Vucetic, S
    Dunker, AK
    Obradovic, Z
    Subject
    Algorithms
    Amino Acid Sequence
    Computer Simulation
    Models, Chemical
    Models, Molecular
    Molecular Sequence Data
    Protein Structure, Secondary
    Proteins
    Sequence Alignment
    Sequence Analysis, Protein
    Software
    Show allShow less
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5637
    
    Metadata
    Show full item record
    DOI
    10.1186/1471-2105-7-208
    Abstract
    Background: Due to the functional importance of intrinsically disordered proteins or protein regions, prediction of intrinsic protein disorder from amino acid sequence has become an area of active research as witnessed in the 6th experiment on Critical Assessment of Techniques for Protein Structure Prediction (CASP6). Since the initial work by Romero et al. (Identifying disordered regions in proteins from amino acid sequences, IEEE Int. Conf. Neural Netw., 1997), our group has developed several predictors optimized for long disordered regions (>30 residues) with prediction accuracy exceeding 85%. However, these predictors are less successful on short disordered regions (≤30 residues). A probable cause is a length-dependent amino acid compositions and sequence properties of disordered regions. Results: We proposed two new predictor models, VSL2-M1 and VSL2-M2, to address this length-dependency problem in prediction of intrinsic protein disorder. These two predictors are similar to the original VSL1 predictor used in the CASP6 experiment. In both models, two specialized predictors were first built and optimized for short (≤30 residues) and long disordered regions (>30 residues), respectively. A meta predictor was then trained to integrate the specialized predictors into the final predictor model. As the 10-fold cross-validation results showed, the VSL2 predictors achieved well-balanced prediction accuracies of 81% on both short and long disordered regions. Comparisons over the VSL2 training dataset via 10-fold cross-validation and a blind-test set of unrelated recent PDB chains indicated that VSL2 predictors were significantly more accurate than several existing predictors of intrinsic protein disorder. Conclusion: The VSL2 predictors are applicable to disordered regions of any length and can accurately identify the short disordered regions that are often misclassified by our previous disorder predictors. The success of the VSL2 predictors further confirmed the previously observed differences in amino acid compositions and sequence properties between short and long disordered regions, and justified our approaches for modelling short and long disordered regions separately. The VSL2 predictors are freely accessible for non-commercial use at http://www.ist.temple.edu/disprot/predictorVSL2.php. © 2006 Peng et al; licensee BioMed Central Ltd.
    Citation to related work
    Springer Science and Business Media LLC
    Has part
    BMC Bioinformatics
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5619
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.