• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    An evolutionary-network model ...
    Size:
    444.7Kb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2007-11-01
    Author
    Poon, AFY
    Lewis, FI
    Kosakovsky Pond, SL
    Frost, SDW
    Subject
    Evolution, Molecular
    HIV-1
    Models, Genetic
    Phylogeny
    Protein Conformation
    Protein Structure, Tertiary
    Sequence Analysis
    Structure-Activity Relationship
    Viral Envelope Proteins
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5615
    
    Metadata
    Show full item record
    DOI
    10.1371/journal.pcbi.0030231
    Abstract
    The third variable loop (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope is a principal determinant of antibody neutralization and progression to AIDS. Although it is undoubtedly an important target for vaccine research, extensive genetic variation in V3 remains an obstacle to the development of an effective vaccine. Comparative methods that exploit the abundance of sequence data can detect interactions between residues of rapidly evolving proteins such as the HIV-1 envelope, revealing biological constraints on their variability. However, previous studies have relied implicitly on two biologically unrealistic assumptions: (1) that founder effects in the evolutionary history of the sequences can be ignored, and; (2) that statistical associations between residues occur exclusively in pairs. We show that comparative methods that neglect the evolutionary history of extant sequences are susceptible to a high rate of false positives (20%-40%). Therefore, we propose a new method to detect interactions that relaxes both of these assumptions. First, we reconstruct the evolutionary history of extant sequences by maximum likelihood, shifting focus from extant sequence variation to the underlying substitution events. Second, we analyze the joint distribution of substitution events among positions in the sequence as a Bayesian graphical model, in which each branch in the phylogeny is a unit of observation. We perform extensive validation of our models using both simulations and a control case of known interactions in HIV-1 protease, and apply this method to detect interactions within V3 from a sample of 1,154 HIV-1 envelope sequences. Our method greatly reduces the number of false positives due to founder effects, while capturing several higher-order interactions among V3 residues. By mapping these interactions to a structural model of the V3 loop, we find that the loop is stratified into distinct evolutionary clusters. We extend our model to detect interactions between the V3 and C4 domains of the HIV-1 envelope, and account for the uncertainty in mapping substitutions to the tree with a parametric bootstrap. © 2007 Poon et al.
    Citation to related work
    Public Library of Science (PLoS)
    Has part
    PLoS Computational Biology
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5597
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.