Short Linear Motifs recognized by SH2, SH3 and Ser/Thr Kinase domains are conserved in disordered protein regions
Genre
Conference ProceedingDate
2008-09-16Author
Ren, SUversky, VN
Chen, Z
Dunker, AK
Obradovic, Z
Subject
Amino Acid MotifsAmino Acid Sequence
Animals
Binding Sites
Computational Biology
Conserved Sequence
Databases, Protein
Humans
Protein-Serine-Threonine Kinases
Proteins
Sequence Analysis, Protein
Sequence Homology, Amino Acid
Structure-Activity Relationship
src Homology Domains
Permanent link to this record
http://hdl.handle.net/20.500.12613/5601
Metadata
Show full item recordDOI
10.1186/1471-2164-9-S2-S26Abstract
Background: Protein interactions are essential for most cellular functions. Interactions mediated by domains that appear in a large number of proteins are of particular interest since they are expected to have an impact on diversities of cellular processes such as signal transduction and immune response. Many well represented domains recognize and bind to primary sequences less than 10 amino acids in length called Short Linear Motifs (SLiMs). Results: In this study, we systematically studied the evolutionary conservation of SLiMs recognized by SH2, SH3 and Ser/Thr Kinase domains in both ordered and disordered protein regions. Disordered protein regions are protein sequences that lack a fixed three-dimensional structure under putatively native conditions. We find that, in all these domains examined, SLiMs are more conserved in disordered regions. This trend is more evident in those protein functional groups that are frequently reported to interact with specific domains. Conclusion: The correlation between SLiM conservation with disorder prediction demonstrates that functional SLiMs recognized by each domain occur more often in disordered as compared to structured regions of proteins. © 2008 Ren et al; licensee BioMed Central Ltd.Citation to related work
Springer Science and Business Media LLCHas part
BMC GenomicsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5583
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Quantifying Nucleoporin Stoichiometry Inside Single Nuclear Pore Complexes In vivoMi, L; Goryaynov, A; Lindquist, A; Rexach, M; Yang, W; Yang, Weidong|0000-0002-3554-3035 (2015-01-01)© 2015, Nature Publishing Group. All rights reserved. The nuclear pore complex (NPC) is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring-scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. NPCs are composed of ∼30 different nucleoporins (Nups), averaged at 8, 16 or 32 copies per NPC. This estimate has not been confirmed for individual NPCs in living cells due to the inherent difficulty of counting proteins inside single supramolecular complexes. Here we used single-molecule SPEED microscopy to directly count the copy-number of twenty-four different Nups within individual NPCs of live yeast, and found agreement as well as significant deviation from previous estimates. As expected, we counted 8 copies of four peripheral Nups and 16 copies of fourteen scaffold Nups. Unexpectedly, we counted a maximum of 16 copies of Nsp1 and Nic96, rather than 32 as previously estimated; and found only 10-15 copies of six other Nups, rather than 8 or 16 copies as expected. This in situ molecular-counting technology can test structure-function models of NPCs and other supramolecular structures in cells.
-
A Spiroligomer α-Helix Mimic That Binds HDM2, Penetrates Human Cells and Stabilizes HDM2 in Cell CultureBrown, ZZ; Akula, K; Arzumanyan, A; Alleva, J; Jackson, M; Bichenkov, E; Sheffield, JB; Feitelson, MA; Schafmeister, CE (2012-10-18)We demonstrate functionalized spiroligomers that mimic the HDM2-bound conformation of the p53 activation domain. Spiroligomers are stereochemically defined, functionalized, spirocyclic monomers coupled through pairs of amide bonds to create spiro-ladder oligomers [1]. Two series of spiroligomers were synthesized, one of structural analogs and one of stereochemical analogs, from which we identified compound 1, that binds HDM2 with a Kd value of 400 nM. The spiroligomer 1 penetrates human liver cancer cells through passive diffusion and in a dose-dependent and time-dependent manner increases the levels of HDM2 more than 30-fold in Huh7 cells in which the p53/HDM2 negative feed-back loop is inoperative. This is a biological effect that is not seen with the HDM2 ligand nutlin-3a. We propose that compound 1 modulates the levels of HDM2 by stabilizing it to proteolysis, allowing it to accumulate in the absence of a p53/HDM2 feedback loop. © 2012 Brown et al.
-
The retinoblastoma family: Twins or distant cousins?Claudio, PP; Tonini, T; Giordano, A; Giordano, Antonio|0000-0002-5959-016X (2002-09-23)The destiny of a cell - whether it undergoes division, differentiation or death - results from an intricate balance of many regulators, including oncoproteins, tumor-suppressor proteins and cell-cycle-associated proteins. One of the better-studied tumor suppressors is the retinoblastoma protein, known as pRb or p105. Two recently identified proteins, pRb2/p130 and p107, show structural and functional similarities to pRb, and these proteins and their orthologs make up the retinoblastoma (Rb) family. Members of the family have been found in animals and plants, and a related protein is known in the alga Chlamydomonas. Members of the Rb family are bound and inactivated by viral proteins and, in turn, bind cellular transcription factors and repress their function, and can also form complexes with cyclins and cyclin-dependent kinases and with histone deacetylases. The are found in the nucleus and their subnuclear localization depends on binding to the nuclear matrix. Members of the family form part of a signal-transduction pathway called the Rb pathway, which is important in cell-cycle regulation and have roles in growth suppression, differentiation and apoptosis in different organisms and cell types.