Show simple item record

dc.creatorClimer, S
dc.creatorTempleton, AR
dc.creatorZhang, W
dc.date.accessioned2021-02-01T00:51:48Z
dc.date.available2021-02-01T00:51:48Z
dc.date.issued2014-01-01
dc.identifier.issn1553-734X
dc.identifier.issn1553-7358
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/5568
dc.identifier.other25233071 (pubmed)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/5586
dc.description.abstract© 2014 Climer et al. Hundreds of genetic markers have shown associations with various complex diseases, yet the “missing heritability” remains alarmingly elusive. Combinatorial interactions may account for a substantial portion of this missing heritability, but their discoveries have been impeded by computational complexity and genetic heterogeneity. We present BlocBuster, a novel systems-level approach that efficiently constructs genome-wide, allele-specific networks that accurately segregate homogenous combinations of genetic factors, tests the associations of these combinations with the given phenotype, and rigorously validates the results using a series of unbiased validation methods. BlocBuster employs a correlation measure that is customized for single nucleotide polymorphisms and returns a multi-faceted collection of values that captures genetic heterogeneity. We applied BlocBuster to analyze psoriasis, discovering a combinatorial pattern with an odds ratio of 3.64 and Bonferroni-corrected p-value of 5.01×10−16. This pattern was replicated in independent data, reflecting robustness of the method. In addition to improving prediction of disease susceptibility and broadening our understanding of the pathogenesis underlying psoriasis, these results demonstrate BlocBuster's potential for discovering combinatorial genetic associations within heterogeneous genome-wide data, thereby transcending the limiting “small effects” produced by individual markers examined in isolation.
dc.format.extente1003766-e1003766
dc.language.isoen
dc.relation.haspartPLoS Computational Biology
dc.relation.isreferencedbyPublic Library of Science (PLoS)
dc.rightsCC BY
dc.subjectAlleles
dc.subjectComputational Biology
dc.subjectGenetic Markers
dc.subjectGenome-Wide Association Study
dc.subjectHumans
dc.subjectPolymorphism, Single Nucleotide
dc.subjectPsoriasis
dc.titleAllele-Specific Network Reveals Combinatorial Interaction That Transcends Small Effects in Psoriasis GWAS
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1371/journal.pcbi.1003766
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-02-01T00:51:45Z
refterms.dateFOA2021-02-01T00:51:49Z


Files in this item

Thumbnail
Name:
Allele-specific network reveals ...
Size:
1.031Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record