Allelic richness following population founding events - A stochastic modeling framework incorporating gene flow and genetic drift
Genre
Journal ArticleDate
2014-12-19Author
Greenbaum, GTempleton, AR
Zarmi, Y
Bar-David, S
Subject
AnimalsComputer Simulation
Evolution, Molecular
Founder Effect
Gene Flow
Gene Frequency
Genetic Drift
Genetic Variation
Genetics, Population
Heterozygote
Humans
Models, Genetic
Stochastic Processes
Permanent link to this record
http://hdl.handle.net/20.500.12613/5585
Metadata
Show full item recordDOI
10.1371/journal.pone.0115203Abstract
© 2014 Greenbaum et al. Allelic richness (number of alleles) is a measure of genetic diversity indicative of a population's long-term potential for adaptability and persistence. It is used less commonly than heterozygosity as a genetic diversity measure, partially because it is more mathematically difficult to take into account the stochastic process of genetic drift for allelic richness. This paper presents a stochastic model for the allelic richness of a newly founded population experiencing genetic drift and gene flow. The model follows the dynamics of alleles lost during the founder event and simulates the effect of gene flow on maintenance and recovery of allelic richness. The probability of an allele's presence in the population was identified as the relevant statistical property for a meaningful interpretation of allelic richness. A method is discussed that combines the probability of allele presence with a population's allele frequency spectrum to provide predictions for allele recovery. The model's analysis provides insights into the dynamics of allelic richness following a founder event, taking into account gene flow and the allele frequency spectrum. Furthermore, the model indicates that the "One Migrant per Generation" rule, a commonly used conservation guideline related to heterozygosity, may be inadequate for addressing preservation of diversity at the allelic level. This highlights the importance of distinguishing between heterozygosity and allelic richness as measures of genetic diversity, since focusing merely on the preservation of heterozygosity might not be enough to adequately preserve allelic richness, which is crucial for species persistence and evolution.Citation to related work
Public Library of Science (PLoS)Has part
PLoS ONEADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5567
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
On the number of new world founders: A population genetic portrait of the peopling of the AmericasHey, J (2005-01-01)The founding of New World populations by Asian peoples is the focus of considerable archaeological and genetic research, and there persist important questions on when and how these events occurred. Genetic data offer great potential for the study of human population history, but there are significant challenges in discerning distinct demographic processes. A new method for the study of diverging populations was applied to questions on the founding and history of Amerind-speaking Native American populations. The model permits estimation of founding population sizes, changes in population size, time of population formation, and gene flow. Analyses of data from nine loci are consistent with the general portrait that has emerged from archaeological and other kinds of evidence. The estimated effective size of the founding population for the New World is fewer than 80 individuals, approximately 1% of the effective size of the estimated ancestral Asian population. By adding a splitting parameter to population divergence models it becomes possible to develop detailed portraits of human demographic history. Analyses of Asian and New World data support a model of a recent founding of the New World by a population of quite small effective size. © 2005 Jody Hey.
-
Adaptation to different human populations by HIV-1 revealed by codon-based analysesKosakovsky Pond, SL; Frost, SDW; Grossman, Z; Gravenor, MB; Richman, DD; Leigh Brown, AJ; Pond, Sergei L. Kosakovsky|0000-0003-4817-4029 (2006-01-01)Several codon-based methods are available for detecting adaptive evolution in protein-coding sequences, but to date none specifically identify sites that are selected differentially in two populations, although such comparisons between populations have been historically useful in identifying the action of natural selection. We have developed two fixed effects maximum likelihood methods: one for identifying codon positions showing selection patterns that persist in a population and another for detecting whether selection is operating differentially on individual codons of a gene sampled from two different populations. Applying these methods to two HIV populations infecting genetically distinct human hosts, we have found that few of the positively selected amino acid sites persist in the population; the other changes are detected only at the tips of the phylogenetic tree and appear deleterious in the long term. Additionally, we have identified seven amino acid sites in protease and reverse transcriptase that are selected differentially in the two samples, demonstrating specific population-level adaptation of HIV to human populations. © 2006 Kosakovsky Pond.
-
An estimator of first coalescent time reveals selection on young variants and large heterogeneity in rare allele ages among human populationsPlatt, A; Pivirotto, A; Knoblauch, J; Hey, J (2019-01-01)© 2019 Platt et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Allele age has long been a focus of population genetic research, primarily because it can be an important clue to the fitness effects of an allele. By virtue of their effects on fitness, alleles under directional selection are expected to be younger than neutral alleles of the same frequency. We developed a new coalescent-based estimator of a close proxy for allele age, the time when a copy of an allele first shares common ancestry with other chromosomes in a sample not carrying that allele. The estimator performs well, including for the very rarest of alleles that occur just once in a sample, with a bias that is typically negative. The estimator is mostly insensitive to population demography and to factors that can arise in population genomic pipelines, including the statistical phasing of chromosomes. Applications to 1000 Genomes Data and UK10K genome data confirm predictions that singleton alleles that alter proteins are significantly younger than those that do not, with a greater difference in the larger UK10K dataset, as expected. The 1000 Genomes populations varied markedly in their distributions for singleton allele ages, suggesting that these distributions can be used to inform models of demographic history, including recent events that are only revealed by their impacts on the ages of very rare alleles.