• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Nano-enhanced Dialytic Fluid Purification: CFD Modeling of Pb(II) Removal by Manganese Oxide

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Nano-enhanced Dialytic Fluid ...
    Size:
    4.793Mb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2020-12-22
    Author
    Atmatzidis, K
    Alimohammadi, F
    Aich, N
    Tehrani, R
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5583
    
    Metadata
    Show full item record
    DOI
    10.1021/acsomega.0c05069
    Abstract
    © Nano-enhanced dialytic fluid purification is an evolution of biomedical dialysis that has been proposed as a novel method for applying nanomaterials in water treatment. Using nanosized hexagonal birnessite (Î-MnO2) in a simplified dialytic system, we demonstrate herein an almost complete removal (98%) of Pb(II) within 3 h of treatment while monitoring environmental variables pH and Eh (redox potential). A mathematical model of the purification process is constructed in COMSOL Multiphysics to demonstrate how nanoadsorption using free-flowing nanoparticles in a dialytic system can be studied theoretically using computational fluid dynamics (CFD). The CFD model closely agrees with experimental results, estimating a 95% removal over 3 h of treatment and suggesting an 18% consumption of available adsorbent capacity. Additional insights into the progress and mechanisms of the adsorption process are also revealed. Finally, the nanoenhanced model is compared against standard dialysis absent of nanomaterials using COMSOL, and key differences in removal efficiency are highlighted. Results indicate that nanoenhanced dialysis can attain almost complete removal in 3 h of treatment or reach the same removal goal as standard dialysis in less than two-third of the treatment time.
    Citation to related work
    American Chemical Society (ACS)
    Has part
    ACS Omega
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5565
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.