• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Microplanktonic community structure in a coastal system relative to a Phaeocystis bloom inferred from morphological and tag pyrosequencing methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Microplanktonic community structure ...
    Size:
    706.5Kb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2012-06-29
    Author
    Monchy, S
    Grattepanche, JD
    Breton, E
    Meloni, D
    Sanciu, G
    Chabé, M
    Delhaes, L
    Viscogliosi, E
    Sime-Ngando, T
    Christaki, U
    Subject
    DNA, Ribosomal
    Diatoms
    Dinoflagellida
    Ecosystem
    Food Chain
    Haptophyta
    Phytoplankton
    Seasons
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5459
    
    Metadata
    Show full item record
    DOI
    10.1371/journal.pone.0039924
    Abstract
    Background: Massive phytoplankton blooms, like the recurrent Phaeocystis proliferation observed every year in the Eastern English Channel (EEC), have a significant influence on the overall planktonic community structure and their food web dynamics. As well as being an important area for local fisheries, the EEC is an ideal ecosystem for work on microbial diversity. This is because, although its environmental context is relatively complex, it is reasonably well understood due to several years of monitoring and morphological observations of its planktonic organisms. The objective of our study was to better understand the under-explored microbial eukaryotic diversity relative to the Phaeocystis bloom. Methodology and Principal Findings: The community structure of microplankton (diatoms, haptophytes, ciliates and dinoflagellates) was studied through morphological observations and tag pyrosequencing. During the annual Phaeocystis spring bloom, the phytoplankton biomass increased by 34-fold, while the microzooplankton biomass showed a 4-fold increase, representing on average about 4.6% of the biomass of their phytoplankton prey. Tag pyrosequencing unveiled an extensive diversity of Gymnodiniaceae, with G. spirale and G. fusiformis representing the most abundant reads. An extended diversity of Phaeocystales, with partial 18S rDNA genes sequence identity as low as 85% was found, with taxa corresponding to P. globosa, but also to unknown Phaeocystaceae. Conclusions: Morphological analyses and pyrosequencing were generally in accordance with capturing frequency shifts of abundant taxa. Tag pyrosequencing allowed highlighting the maintenance of microplankton diversity during the Phaeocystis bloom and the increase of the taxa presenting low number of reads (minor taxa) along with the dominant ones in response to biotic and/or abiotic changing conditions. Although molecular approaches have enhanced our perception on diversity, it has come to light that the challenge of modelling and predicting ecological change requires the use of different complementary approaches, to link taxonomic data with the functional roles of microbes in biogeochemical cycles. © 2012 Monchy et al.
    Citation to related work
    Public Library of Science (PLoS)
    Has part
    PLoS ONE
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5441
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.