Analysis of genome content evolution in PVC bacterial super-phylum: Assessment of candidate genes associated with cellular organization and lifestyle
Genre
Journal ArticleDate
2012-12-01Author
Kamneva, OKKnight, SJ
Liberles, DA
Ward, NL
Subject
genome evolution in PVC super-phylumcellular compartmentalization
DUF1501 and Planctomycetes-specific cytochromes
mucin-degradation by Akkermansia muciniphila
Permanent link to this record
http://hdl.handle.net/20.500.12613/5438
Metadata
Show full item recordDOI
10.1093/gbe/evs113Abstract
The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several out group species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved geneticmodule preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies. © The Author(s) 2012.Citation to related work
Oxford University Press (OUP)Has part
Genome Biology and EvolutionADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5420