MS-kNN: Protein function prediction by integrating multiple data sources
Genre
Journal ArticleDate
2013-02-28Author
Lan, LDjuric, N
Guo, Y
Vucetic, S
Subject
AlgorithmsGenomics
Humans
Protein Interaction Mapping
Proteins
Sequence Analysis, Protein
Transcriptome
Vocabulary, Controlled
Permanent link to this record
http://hdl.handle.net/20.500.12613/5407
Metadata
Show full item recordDOI
10.1186/1471-2105-14-S3-S8Abstract
Background: Protein function determination is a key challenge in the post-genomic era. Experimental determination of protein functions is accurate, but time-consuming and resource-intensive. A cost-effective alternative is to use the known information about sequence, structure, and functional properties of genes and proteins to predict functions using statistical methods. In this paper, we describe the Multi-Source k-Nearest Neighbor (MS-kNN) algorithm for function prediction, which finds k-nearest neighbors of a query protein based on different types of similarity measures and predicts its function by weighted averaging of its neighbors' functions. Specifically, we used 3 data sources to calculate the similarity scores: sequence similarity, protein-protein interactions, and gene expressions.Results: We report the results in the context of 2011 Critical Assessment of Function Annotation (CAFA). Prior to CAFA submission deadline, we evaluated our algorithm on 1,302 human test proteins that were represented in all 3 data sources. Using only the sequence similarity information, MS-kNN had term-based Area Under the Curve (AUC) accuracy of Gene Ontology (GO) molecular function predictions of 0.728 when 7,412 human training proteins were used, and 0.819 when 35,622 training proteins from multiple eukaryotic and prokaryotic organisms were used. By aggregating predictions from all three sources, the AUC was further improved to 0.848. Similar result was observed on prediction of GO biological processes. Testing on 595 proteins that were annotated after the CAFA submission deadline showed that overall MS-kNN accuracy was higher than that of baseline algorithms Gotcha and BLAST, which were based solely on sequence similarity information. Since only 10 of the 595 proteins were represented by all 3 data sources, and 66 by two data sources, the difference between 3-source and one-source MS-kNN was rather small.Conclusions: Based on our results, we have several useful insights: (1) the k-nearest neighbor algorithm is an efficient and effective model for protein function prediction; (2) it is beneficial to transfer functions across a wide range of organisms; (3) it is helpful to integrate multiple sources of protein information. © 2013 Lan et al.; licensee BioMed Central Ltd.Citation to related work
Springer Science and Business Media LLCHas part
BMC BioinformaticsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5389