• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Exploring histidine conformations in the M2 channel lumen of the influenza a virus at neutral pH via molecular simulations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Exploring Histidine Conformations ...
    Size:
    1.857Mb
    Format:
    PDF
    Download
    Genre
    Journal Article
    Date
    2013-09-19
    Author
    Dong, H
    Fiorin, G
    Degrado, WF
    Klein, ML
    Subject
    0307 Theoretical and Computational Chemistry
    Emerging Infectious Diseases
    Infectious Diseases
    Influenza
    Pneumonia & Influenza
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5378
    
    Metadata
    Show full item record
    DOI
    10.1021/jz401672h
    Abstract
    The pH-regulated M2 proton channel from the influenza A virus has a His-tetrad in its transmembrane (TM) domain that is essential for proton conduction. At neutral pH, the tetrad has been observed in two distinct configurations, the "His-box" and "dimer-of-dimers", with similar backbone structures suggesting competing models for proton conduction. Here, we propose that both conformations can play a role. In support of this hypothesis, we used molecular dynamics simulations based on density functional theory to simulate the M2-TM domain and force-field-based simulations to estimate the relevant free-energy barriers. Both configurations are stable on accessible simulation time scales, and transitions between them occur faster than the millisecond time scale of proton conduction. Moreover, the deprotonation energy is too high for spontaneous conduction, consistent with their occurrence in the low-current regime. Our computations support a multiconfiguration model with different population levels, thereby connecting experimental data obtained under different conditions. © 2013 American Chemical Society.
    Citation to related work
    American Chemical Society (ACS)
    Has part
    Journal of Physical Chemistry Letters
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5360
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.